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Lists of Symbols

Sets and Functions

ae A The object a is an element of the set A.

a:=b We use a as a shorthand for b.

| A The cardinality (i.e., number of elements) of a finite set A.
ACB  Ais asubset of B.

ACB  Ais a strict subset of B.

N The natural numbers 1,2, .. ..

R The real numbers x [1].

R, The non-negative real numbers x > 0.

R4 The positive real numbers x > 0.

{0,1}

The set consisting of the two real numbers 0 and 1.

[0, 1]

The closed interval of real numbers z with 0 < z < 1.



argmin f(w)

The set of minimizers for a real-valued function f(w).

The set of unit-norml vectors in R™+1,
See also: morml

The logarithm of the positive number a € R, . .

h(-):A—B:a—h(a)

A function (i.e., a map) that accepts any element a € A
from a set A as input and delivers a well-defined ele-
ment h(a) € B of a set B. The set A is the domain
of the function h and the set B is the codomain of h.

IMachine learning (ML)|aims at finding (or learning) a

function h (i.e., afhypothesis) that reads in the [features|
x of a and delivers a h(x) for its
y.

See also: [MT] hypothesis, [feature, [data point], [predic]

ot [abel

The of a real-valued function f:R? — R.

epi(f)
See also: [epigraph]
Af(wy, ..., wy) The partial derivative (if it exists) of a real-valued
Qw, function f : RY — R with respect to w; , Ch. 9].
The of a real-valued function
. ; _ (9f of \T
Y (w) f:R? — R is the vector Vf(w) = (a—m,...,a—w) €
R? [2, Ch. 9).

See also: [gradient] [differentiable]
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Matrices and Vectors

X = (xl,...,xd)T

A vector of length d, with its j-th entry being z;.

Rd

The set of vectors x = (xl, e ,xd)T consisting of d real-

valued entries z1,...,x4 € R.

Il><d

A generalized identity matrix with [ rows and d columns.
The entries of I;,4 € R™*? are equal to 1 along the main

diagonal and equal to 0 otherwise.

I;,1

A square identity matrix of size d x d. If the size is clear

from context, we drop the subscript.

Il

The Euclidean (or /) of the vector x =
(1, ... ,md)T € R? defined as [|x|)s := /2%, 3.

J
See also: morml

Some of the vector x € R? [3]. Unless specified
otherwise, we mean the Euclidean 1|l
See also: morml

The transpose of a matrix that has the vector x € R? as

its single column.

The transpose of a matrix X € R™*¢. A square real-valued

matrix X € R™*™ is called symmetric if X = X7

The vector in R? with each entry equal to zero.

The vector in R? with each entry equal to one.
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The vector of length d 4+ d' obtained by concatenating the entries

(v, w") /
of vector v € R? with the entries of w € R?.
The span of a matrix B € R**®, which is the subspace of all linear
span{B} combinations of the columns of B, such that span{B} = {Ba :
acR'} CR
det (C) The determinant of the matrix C.
A®B The Kronecker product of A and B [4].



Probability Theory

The frandom variable (RV)|[x is distributed according to the

x ~ p(z) lability distribution] p(z) [5], [6].
See also: [RV], [probability distribution]
The of a f(z) that is obtained by applying a
deterministic function f to an[RV]z whose [probability distribution|
E,{f(z)}  is p(z). If the [probability distribution|is clear from context, we
just write E{f(z)}.
See also: [expectation] [RV] [probability distribution]
A (joint) [probability distribution] of an [RV] whose are
[data pointg with [featured x and [labell y.
plx.y) See also: [probability distribution| [RV], [realization] [data point]
[ae)
A conditional [probability distribution| of an [RV]x given the value
p(x|y) of another [RV] y [7, Sec. 3.5].
See also: [probability distribution] [RV]
A parametrized [probability distribution| of an [RV]x. The
[bility distribution|depends on a parameter vector w. For example,
p(x; w) could be a [multivariate normal distribution| with the pa-
p(x; W) rameter vector w given by the entries of the vector E{x}

and the |covariance matrix E{ (x —E{x})(x — ]E{x})T}

See also: [probability distribution] [RV] multivariate normal distri]

[pution| fmean} [covariance matrix}




The [probability distribution|of a|Gaussian random variable (Gaus{

z € R withmean| (or[expectation)) 1 = E{z} and[variance

N(p0®) o =E{(z — p)*}.
See also: [probability distribution| [Gaussian RV jmeanl [expectaf
Farianc
The multivariate normal distribution] of a vector-valued
x € R? with [mean| (or |expectation]) g = E{x} and
N(p,C)  |matrix| C =E{(x — ) (x—u)T}.

See also: [multivariate normal distributionl [Gaussian RV] [meanl,

lexpectation| [covariance matrix|




Machine Learning

An index r = 1,2, ... that enumerates

r

See also: |[data point)|

The number of |[data points|in (i.e., the size of) a
m

See also: |[data point| [dataset|

A D ={zM ... z™} is a list of individual [data points|z",

D forr=1,...,m.

See also: [dataset] [data point]

The number of that characterize a [data pointl

See also: [teature [data point|

The j-th [featurd of a [data pointl The first is denoted x;, the
zr;  second T, and so on.

See also: [data point], [feature]

The [feature vector| x = (:cl, e ,xd)T of a|data pointl The vector’s

X entries are the individual [features| of a [data point]

See also: [teature vector] [data point] featurel

The X is the set of all possible values that the
X xof aldata point] can take on.

See also: [feature space] [feature, [data point]




Instead of the symbol x, we sometimes use z as another symbol
to denote a vector whose entries are the individual featured of a
[data point] We need two different symbols to distinguish between
raw and learned [8, Ch. 9].

See also: [feature] [data point|

The [feature vector] of the r-th within a [dataset]

See also: [teature] [data point] [dataset]

The j-th of the r-th within a [datased

See also: [teature] [data point|, [datasetl

A mini{batch] (or subset) of randomly chosen [data points

See also: [batchl [data point]

The size of (i.e., the number of |[data points|in) a mini

See also: |data point] [batchl

The (or quantity of interest) of a|data point|
See also: [labell [data point]

The of the r-th [data point]
See also: [labell [data point]

The [features and [label of the r-th [data point]
See also: [feature] [labell |[data point]
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The Y of an method consists of all potential
values that a can carry. The nominal might be
larger than the set of different values arising in a given
(e.g., a [training set)). [MI] problems (or methods) using a numeric
such as Y = R or Y = R3, are referred to as

d problems (or methods). problems (or methods) that use a discrete
such as Y = {0,1} or Y = {cat, dog, mouse}, are referred
to as problems (or methods).
See also: [[abel space], [MI], [label| [data point] [dataset] [training sef],
[regression| [classification]|
[Learning rate| (or [step size|) used by |gradient-based methods|

n

See also: [learning rate] [step size] [eradient-based methods|

A map that reads in x of a and delivers
a prediction § = h(x) for its [abel .

See also: |hypothesis| [feature] [data pointl, [prediction], [labell

Given two sets X and ), we denote by V¥ the set of all possible

y* hypothesis maps h: X — ).
See also: [hypothesis|
A [hypothesis space| or [model used by an [MI] method. The
consists of different maps h : X — Y, between which
H

the [MT] method must choose.

See also: [hypothesis space, [modell [ML] [hypothesis]
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The leffective dimension| of a [hypothesis space] H.

See also: |effective dimension|, [hypothesis spacel

The squared of a learned h, or its
Note that h becomes a if it is learned from
being

See also: [bias| [hypothesis], [parameters], [RV], [data point]

The of a learned iL, or its .
Note that & becomes a if it is learned from
being

See also: [variance, [hypothesis], [parameters] [RV] [data point]

The incurred by predicting the y of a
using the g = h(x). The g is obtained
by evaluating the h € H for the [feature vector] x
of the

See also: [oss], [labell [data point], [prediction] [hypothesis| [featurd]
fvectorl

The [validation error| of a |hypothesis| h, which is its average
[osd incurred over a validation sefl

See also: [validation error] [hypothesis| [loss| [validation set]

L(h|D)

The lempirical riskl or average incurred by the [hypothesis
h on a D.

See also: |empirical riskl, [loss|, [hypothesis], |[dataset]|
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The [training error] of a fhypothesis| h, which is its average

E, incurred over a [training set

See also: [training error| [hypothesis| [loss| [training setl

A discrete-time index t = 0,1, ... used to enumerate sequential
t

events (or time instants).

An index that enumerates within a [multitask learn]
t problem.

See also: [learning taskl| multitask learning|

A [regularization] parameter that controls the amount of
o izationl

See also: regularization|

The j-th (sorted in either ascending or descending
A (Q) order) of a [positive semi-definite (psd)| matrix Q. We also use the

J

shorthand J; if the corresponding matrix is clear from context.

See also: [eigenvalue [psd]

The jactivation tunction| used by an artificial neuron within an

lartificial neural network (ANN)|

See also: factivation function] [ANN]

A |decision region| within a [feature space

See also: [decision regionl [feature spacel
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A parameter vector w = (wl,...,wd)T of a |model| e.g., the

w [weights| of a [linear modell or in an

See also: [modell, [weights], linear modell, [ANN]

A map that involves tunable [model parameters|
A () wy, ..., wy stacked into the vector w = (wy, ... ,wd)T.

See also: |hypothesis| [model parameters|

A ffeature map| ¢ : X — X' : x— X 1= ¢(x) € X'
See also: [feature map}

Given some [feature space] X', a [kernellis a map K : X x X — C

that is

See also: [teature space)] [kernell [psd|
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Federated Learning

An undirected whose nodes i € V represent
within a [federated learning network (FL network), The undi-

rected weighted edges € represent connectivity between [devices|

g= (Vv 8)
and statistical similarities between their [datasets| and [learning)
tasksl
See also: |graphl [device) |[F'L networkl, |[dataset], [[earning task|
A node that represents some within an [FL network]
i€V The can access a [local datasefl and train a [ocal modell
See also: [device| [FL network], [local dataset] local modell
G The induced subgraph of G using the nodes in C C V.
© The |[Laplacian matrix| of a |graph| G.
L
See also: [Laplacian matrix] [graphl
L© The [Laplacian matrix| of the induced G,
See also: [Laplacian matrix] [graphl
A The neighborhood] of a node i in a[graph| G.
See also: meighborhood| |[graphl
The weighted degree d® := Y ivent Aii of anode i in a
" g.

See also:
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d9)

max

The weighted node degree of a g.

See also: maximuml, [graphl

The D carried by node i € V of an

See also: [local dataset] [F'L networkl

m;

The number of [data pointg| (i.e., [sample size]) contained in the
local dataset| D at node i € V.

See also: |[data point], [sample size) [local dataset]

The of the 7-th in the 2

See also: [teature] [data point], local dataset]

The flabel of the r-th in the D,

See also: [labell [data point], [local dataset]

The local [model parameters of [device] ¢ within an

See also: [model parameters| [device], [FL networkl

The local used by [device] i to measure the usefulness

of some choice w for the local model parameters]

See also: [loss functionl [device] [model parameters|
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The incurred by a h' on a[data point,
with x and h(x) that is obtained from

another
See also: [loss, hypothesis| [data point]| [feature] [[abell

LO (. h{x). ¥ (x))

T

The vector ((W(l))T, cee (W(”))T> € R that is
stack{w(®}" obtained by vertically stacking the local

w € RY.

See also: model parameters,
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Machine Learning Concepts

k-fold cross-validation (k-fold CV) k-fold CV is a method for learning
and validating a using a given This method divides
the [dataset] evenly into k subsets or folds and then executes k repetitions
of training (e.g., via |empirical risk minimization (ERM)|) and
Each repetition uses a different fold as the [validation sef]
and the remaining k& — 1 folds as a The final output is the

average of the [validation errors| obtained from the k repetitions.

See also: [hypothesis] [dataset], model] [ERM], [validation] [validation set],

[training set), [validation error}

k-means The k{means|lalgorithm|is a [hard clusteringl method which assigns
each [data poinf] of a [dataset] to precisely one of k different [clusters|
The method alternates between updating the assignments (to

the with the nearest and, given the updated
assignments, re-calculating the , Ch. 8|.

See also: mean|, [algorithml|, |hard clustering] [data point| [dataset] [cluster]

absolute error loss Consider aldata point|with [features|x € X’ and numeric
y € R. The absolute error[losg incurred by ahypothesigh : X — R
is defined as |[y—h(x)], i.e., the absolute difference between the [prediction]
h(x) and the true Y.

See also: [data point], feature] [labell, [loss|, [hypothesis] [prediction]
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accuracy Consider characterized by x € X and a
categorical y which takes on values from a finite V.
The accuracy of a h : X — Y, when applied to the
|points| in a |dataset| D= {(x(l), y(l)), e (x(m), y(m)) }, is then defined
as 1— (1/m) Y LY ((x™),y™), h) using the LOM (..
See also: |data point], [feature] [labell [label space] hypothesis], [dataset], [0/1
lossl

activation function Each artificial neuron within an [ANN]is assigned an
activation function o(-) that maps a weighted combination of the neuron
inputs xq,...,x4 to a single output value a = a(wlxl + ...+ wdasd).
Note that each neuron is parametrized by the Wi,y .., Wy,
See also: [ANN] [weights]

algebraic connectivity The algebraic connectivity of an undirected
is the second-smallest Ay of its [Laplacian matrix} A [graph)is

connected if and only if Ay > 0.

See also: [graphl [eigenvalue] [Laplacian matrix|

algorithm An algorithm is a precise, step-by-step specification for how
to produce an output from a given input within a finite number of
computational steps [@ﬂ For example, an algorithm for training a
explicitly describes how to transform a given into

[model parameters| through a sequence of [gradient stepsl This informal

characterization can be formalized rigorously via different mathematical

. One very simple of an algorithm is a collection of
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possible executions. Each execution is a sequence in the form of
input, sq, So, . .., ST, output

that respects the constraints inherent to the computer executing the
algorithm. Algorithms may be deterministic, where each input results
in a single execution, or randomized, where executions can vary proba-
bilistically. Randomized algorithms can thus be analyzed by modeling
execution sequences as outcomes of random experiments, viewing the
algorithm as a stochastic process [7], [L1], [12]. Crucially, an algorithm
encompasses more than just a mapping from input to output; it also

includes the intermediate computational steps sq,..., sr.

See also: [linear modell, [training set] [model parameters, [eradient step|

modell

application programming interface (API) An API is a formal mecha-
nism that allows software components to interact in a structured and
modular way [13]. In the context of , APIs are commonly used
to provide access to a trained [MI]model Users—whether humans or

machines—can submit the [feature vector| of a|data point| and receive a
corresponding [prediction] Suppose a trained [MI][modell is defined as
ﬁ(:z:) := 2x+ 1. Through an API, a user can input z = 3 and receive the
output ﬁ(3) = 7 without knowledge of the detailed structure of the
or its training. In practice, the is typically deployed on a

server connected to the internet. Clients send requests containing

values to the server, which responds with the computed
E(x) APIs promote modularity in system design, i.e., one team can
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develop and train the model, while another team handles integration
and user interaction. Publishing a trained via an API also offers

practical advantages:

e The server can centralize computational resources which are re-

quired to compute [predictions

e The internal structure of the[mode] remains hidden (which is useful
for protecting intellectual property (IP) or trade secrets).

However, APIs are not without Techniques such as [model mversion|
can potentially reconstruct a from its on carefully
selected [feature vectord

See also: [MI], [model], [feature vector], [data point], [prediction], feature,

models o

artificial intelligence (AI) Al refers to systems that behave rationally in
the sense of maximizing a long-term freward, The [MI}based approach to
Al is to train a for predicting optimal actions. These
are computed from observations about the state of the environment.
The choice of sets Al applications apart from more basic

applications. Al systems rarely have access to a labeled
that allows the average to be measured for any possible choice

of [model parameters Instead, Al systems use observed signals

to obtain a (point-wise) estimate for the incurred by the current

choice of j[model parameters|

See also: [reward], [MT] [modell, foss Tunction], [training set], oss], [modell

paralneters
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artificial neural network (ANN) An ANN is a graphical (signal-flow)

representation of a function that maps [features| of a [data point| at its

input to a for the corresponding [label at its output. The

fundamental unit of an ANN is the artificial neuron, which applies an

[activation function| to its weighted inputs. The outputs of these neurons

serve as inputs for other neurons, forming interconnected layers.

See also: [feature] [data point], [predictionl [labell [activation function]

attack An attack on affederated learning (FL)|system refers to the intentional

perturbation or manipulation of certain components of the system.

Such components include the [local datasets (data poisoning|) or the

communication links between [devices. Depending on their objective,

we distinguish between |denial-of-service attackp, |backdoor| attacks and

privacy attacks.

autoencoder An autoencoder is an [MI] method that simultaneously learns
an encoder map h(-) € H and a decoder map h*(-) € H*. It is an
instance of [ERM] using a computed from the reconstruction error
x — h* (h(x) )
See also: [ML], [ERM] [loss]

backdoor A backdoor attack refers to the intentional manipulation of the
training process underlying an [MI] method. This manipulation can be
implemented by perturbing the (i.e., through|data poisoning))
or via the optimization used by an [ERM}based method. The
goal of a backdoor attack is to nudge the learned h towards

specific [predictions| for a certain range of feature| values. This range
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of values serves as a key (or trigger) to unlock a backdoor
in the sense of delivering anomalous [predictionsl The key x and the
corresponding anomalous h(x) are only known to the attacker.

See also: [MI] [training sef] [data poisoning], [algorithml [ERM]|, [hypothesis|
[predictionl [feature]

bagging (or bootstrap aggregation) Bagging (or bootstrap aggregation)
is a generic technique to improve (the robustness of) a given method.
The idea is to use the to generate perturbed copies of a given

and then to learn a separate for each copy. We
then predict the [labell of a|data point| by combining or aggregating the

individual of each separate [hypothesisl For hypothesis| maps
delivering numeric values, this aggregation could be implemented

by computing the average of individual
See also: [MT] [bootstrap]| [dataset] hypothesis| [[abell [data point], fpredic]
[tionl

baseline Consider some method that produces a learned fhypothesis| (or

trained [model) 2 € H. We evaluate the quality of a trained

by computing the average |loss| on a [test setl But how can we assess

whether the resulting performance is sufficiently good? How

can we determine if the trained performs close to optimal and
there is little point in investing more resources (for collection or
computation) to improve it? To this end, it is useful to have a reference
(or baseline) level against which we can compare the performance of

the trained Such a reference value might be obtained from
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human performance, e.g., the misclassification rate of dermatologists
who diagnose cancer from visual inspection of skin . Another source
for a baseline is an existing, but for some reason unsuitable, [ML] method.
For example, the existing [ML] method might be computationally too
expensive for the intended application. Nevertheless, its

error can still serve as a baseline. Another, somewhat more principled,

approach to constructing a baseline is via a [probabilistic model. In many

cases, given a [probabilistic model| p(x,y), we can precisely determine

the achievable among any hypotheses (not even required
to belong to the [hypothesis spacd #H) [15]. This achievable
(referred to as the is the of the [Bayes estimator|
for the y of a given its x. Note that, for

a given choice of [loss function| the [Bayes estimator| (if it exists) is

completely determined by the [probability distribution] p(x,y) [15, Ch.

4]. However, computing the [Bayes estimator| and |Bayes risk| presents

two main challenges:

1) The probability distribution| p(x,y) is unknown and needs to be

estimated.

2) Even if p(x,y) is known, it can be computationally too expensive

to compute the exactly [16].

A widely used [probabilistic modellis the [multivariate normal distributionl|

(x,y) ~ N(w,X) for [data points| characterized by numeric and
Here, for the [squared error loss| the [Bayes estimator]is given by

the posterior fiyx Of the y, given the x [15], [17].
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The corresponding is given by the posterior 0'§|x

(see Fig. [1).

Fig. 1. If the [features| and the [label| of a |data point| are drawn from a

[multivariate normal distributionl we can achieve the jminimuml|frisk| (under

isquared error loss|) by using the [Bayes estimator| ju,x to predict the Yy

of a with x. The corresponding [minimum|[risk| is given
by the posterior 02|x. We can use this quantity as a baseline for the

~

average [loss| of a trained model| h.

See also: [ML] hypothesis| [modell [loss] ftest set] [datal, probabilistic model]

[minimuml), [riskl [hypothesis space] [Bayes riskl |Bayes estimator| [labell,

|[data point}, [feature] [loss functionl [probability distributionl [multivariate

[normal distributionl [squared error loss, mean| [variance|

batch In the context of stochastic gradient descent (SGD), a batch refers to

a randomly chosen subset of the overall We use the
in this subset to estimate the [gradient] of [training error] and, in

turn, to update the [model parameters|

See also: [SGD], ftraining set] [data point], [gradient], ffraining error] [model|
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parareters

Bayes estimator Consider a [probabilistic model] with a joint

p(x,y) for the [features x and [labe] y of a[data point] For
a given L(--), we refer to a h as a Bayes
estimator if its E{L ((x,y),h)} is the [15]. Note that
the property of a being a Bayes estimator depends on the
underlying [probability distribution] and the choice for the
L(--).

See also: [probabilistic modell, [probability distribution] [feature] [abell

[data point] [loss function|, |hypothesis| [risk], pminimuml

Bayes risk Consider a [probabilistic model| with a joint [probability distribuf

p(x,y) for the [features x and [label y of a[data point] The Bayes|risk]
is the possible that can be achieved by any
h:X — ). Any that achieves the Bayes is referred to
as a [Bayes estimator] [15].

See also: [probabilistic model], [probability distribution| [feature] labell

[data point] [riskl jminimuml (hypothesis| [Bayes estimator]

bias Consider an [ML] method using a parametrized [ypothesis space] H. It
learns the [model parameters w € R? using the

D= { (<) !

r=1"

To analyze the properties of the [ML] method, we typically interpret the

[data pointg as [realizations of independent and identically distributed]

y" = (x) + e r=1,...,m.
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We can then interpret the method as an estimator w computed
from D (e.g., by solving [ERM|). The (squared) bias incurred by the

estimate W is then defined as B? := ||E{w} — W”;

See also: [MT], [hypothesis space], [model parameters], [dataset] [data point]

[realization] [.i.d] [RV] [ERM]

boosting Boosting is an iterative optimization method to learn an accurate
map (or strong learner) by sequentially combining less accu-
rate maps (referred to as weak learners) [18, Ch. 10]. For
example, weak learners are shallow which are combined
to obtain a deep [decision treel Boosting can be understood as a
[alization| of [gradient-based methods| for [ERM| using parametric
and [smooth][loss functions| [19]. Just like [gradient descent (GD)|itera-
tively updates [model parameters| to reduce the fempirical risk] boosting
iteratively combines (e.g., by summation) maps to reduce
the A widely-used instance of the generic boosting idea
is referred to as boosting, which uses of the
for combining the weak learners |19].
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L(z,h)

Fig. 2. Boosting methods construct a sequence of hypothesisimaps h(®, b4 ...

that are increasingly strong learners (i.e., incurring a smaller [loss|).

See also: [hypothesis], |[decision tree] |generalization) [eradient-based meth{

[ods], ERM], [model] smoothl, [loss function], [GD], [model parameters] [em]
[pirical risk] leradient] [loss| [gradient stepl

bootstrap For the analysis of [MI] methods, it is often useful to interpret

a given set of D= {z(l), e ,z(m)} as |realizations| of |i.i.d.|

with a common [probability distribution| p(z). In general, we do

not know p(z) exactly, but we need to estimate it. The bootstrap
uses the of D as an estimator for the underlying
p(z).

See also: [MIJ [data point], [realization] [i.i.d] [RV] [probability distribution]
[stogzan]
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central limit theorem (CLT) The CLT refers to mathematically precise
statements about the tendency of an average of a large number of

independent to tend towards a[Gaussian RV]
See also: [RV], [Gaussian RV]

classification Classification is the task of determining a discrete-valued

y for a given based solely on its x. The Yy
belongs to a finite set, such as y € {—1,1} or y € {1,...,19}, and

represents the category to which the corresponding belongs.
See also: [labell [data point], [feature]

classifier A classifier is a [hypothesis| (i.e., a map) h(x) used to predict a
taking values from a finite We might use the function

value h(x) itself as a g for the [labell However, it is customary

to use a map h(-) that delivers a numeric quantity. The is
then obtained by a simple thresholding step. For example, in a binary

problem with ) € {—1,1}, we might use a real-valued
hypothesis| map h(x) € R as a classifier. A y can then be

obtained via thresholding,

y =1 for h(x)>0 and y = —1 otherwise. (1)

We can characterize a classifier by its [decision regions| R,, for every

possible value a € ).
See also: [hypothesis| [labell label space] [prediction], [classificationl [decid

sion region|

cluster A cluster is a subset of that are more similar to each
other than to the outside the cluster. The quantitative
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measure of similarity between is a design choice. If
are characterized by Euclidean [feature vectors| x € R¢, we can

define the similarity between two via the Euclidean distance

between their [feature vectors. An example of such clusters is shown in

Fig.

Clusters of Data Points
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Fig. 3. Illustration of three clusters in a two-dimensional [feature space, Each

cluster groups that are more similar to each other than to those

in other clusters, based on the Euclidean distance.

See also: |[data point], [feature vector] [feature spacel

clustered federated learning (CFL) CFL trains local models| for the

ol |




in a [FI] application by using a [clustering assumption] i.e., the
[devices of an [FL networkl form [clusters. Two in the same [cluster]

generate [local datasets with similar statistical properties. CFL pools

the [local datasets of [deviceg in the same to obtain a [training sef

for a [cluster}specific [modell [Generalized total variation minimization]

(GTVMin)| clusters implicitly by enforcing approximate similar-
ity of [model parameters| across well-connected nodes of the [FL networkl

See also: [local model], [device], [FT] [clustering assumption], [FL network]

[cTuster], [local dataset], [fraining set], [model], [GTVMin| [model parameters]

clustering Clustering methods decompose a given set of into

a few subsets, which are referred to as [clusters] Each consists
of that are more similar to each other than to
outside the Different clustering methods use different measures
for the similarity between and different forms of
representations. The clustering method [k-meansuses the average feature]
vector of a (i.e., the as its representative. A

popularsoft clustering|method based on|Gaussian mixture model (GMM)|
represents a by a [multivariate normal distribution|

See also: [data point], [cluster] [k-meang], [feature, [mean), [soft clustering],

[GMM], [multivariate normal distribution|

clustering assumption The assumption postulates that

[points| in a [dataset| form a (small) number of groups or |[clusters] [Datal
in the same are more similar to each other than those
outside the [cluster] [20]. We obtain different methods by using
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different notions of similarity between [data points|

See also: [clustering], [data point]|, [dataset] [cluster]

computational aspects By computational aspects of an [ML] method, we
mainly refer to the computational resources required for its implemen-
tation. For example, if an [MI] method uses iterative optimization
techniques to solve then its computational aspects include: 1)
how many arithmetic operations are needed to implement a single itera-

tion (i.e., agradient step|); and 2) how many iterations are needed to

obtain useful jmodel parameters, One important example of an iterative

optimization technique is [GD]
See also: [ML] [ERM] [gradient step| [model parameters| [GD]

concentration inequality An upper bound on the that an [RV]

deviates more than a prescribed amount from its [21].
See also: [probability], [RV] [expectation]

condition number The condition number x(Q) > 1 of a positive definite
matrix Q € R?*? is the ratio a/3 between the largest o and the smallest
64 of Q. The condition number is useful for the analysis of
[MIL] methods. The computational complexity of [gradient-based methods|

for [linear regression| crucially depends on the condition number of the

matrix Q = XX”, with the [feature matrix| X of the Thus,

from a computational perspective, we prefer [features| of [data points| such

that Q has a condition number close to 1.

See also: leigenvalue], [MTJ [eradient-based methods], linear regression],

[feature matrix| [training set] [feature) [data point|
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confusion matrix Consider|data points|, which are characterized by [features

x and y, having values from the finite label space] Y = {1, ..., k}.
For a given h, the confusion matrix is a k x k matrix with

rows representing the elements of ). The columns of a confusion matrix

correspond to the h(x). The (¢, ¢')-th entry of the confusion

matrix is the fraction of [data points| with [labell y =c¢ and resulting in a

h(x)=c.

See also: |[data point| [feature| labell label space] |hypothesis], [prediction|

connected graph An undirected G = (V,&) is connected if every

non-empty subset V' C V has at least one edge connecting it to V' \ V'.
See also:

convex A subset C C R? of the[Euclidean space|R? is referred to as convex if it

contains the line segment between any two points x,y €C in that set. A

function f:R?—R is convex if its |epigraph| { (w”, t)T eERM > f(w)}

is a convex set [22]. We illustrate one example of a convex set and a

convex function in Fig. [

C
fw)

Fig. 4. Left: A convex set C C R%. Right: A convex function f : R? — R.

See also: [Euclidean spacel
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convex clustering Consider a xM . xM e RY. |Convex]|cluster]

learns vectors w(», ..., w(™ by minimizing

3 X - W(T)Hz +ay Hw(i) _w@®
r=1

1,9 €V

p

Here, [uf|, = (Z;l:l |uj\p)1/p denotes the pmorm| (for p > 1). It

turns out that many of the optimal vectors w(l), ... W™ coincide. A

then consists of those |[data points|r € {1, ..., m} with identical
& 3, ]

See also: [dataset] [convex], [clustering] [norml, [cluster] [data point]

Courant—Fischer—Weyl min-max characterization Consider a[psd ma-

trix Q € R™? with feigenvalue decomposition (EVD)| (or spectral de-

composition),
d
Q= Z Aut?) (u(j))T_
j=1
Here, we use the ordered (in increasing fashion)

M<. <\,

The Courant-Fischer-Weyl min-max characterization [3, Th. 8.1.2]
represents the of Q as the solutions to certain optimization

problems.

See also: [psd] [EVD], [eigenvalue]

covariance matrix The covariance matrix of an @ x € R? is defined as

B{ (x - E{x}) (- E{x})"}.

See also: [RV1

34



data Data refers to objects that carry information. These objects can
be either concrete physical objects (such as persons or animals) or
abstract concepts (such as numbers). We often use representations (or
approximations) of the original data that are more convenient for data
processing. These approximations are based on different data models]
with the relational data being one of the most widely used .
See also: modell

data augmentation augmentation methods add synthetic
to an existing set of [data points These synthetic are

obtained by perturbations (e.g., adding noise to physical measurements)

or transformations (e.g., rotations of images) of the original [data points

These perturbations and transformations are such that the resulting

synthetic should still have the same [labell As a case in

point, a rotated cat image is still a cat image even if their [feature vectors|

(obtained by stacking pixel color intensities) are very different (see Fig.

B). augmentation can be an efficient form of [regularization|
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Fig. 5. [Datajaugmentation exploits intrinsic symmetries of|data points|in some

X. We can represent a symmetry by an operator 7 : X — X,

parametrized by some number 7 € R. For example, 7 might represent the

effect of rotating a cat image by 1 degrees. A [data point| with [feature vector]

x@ = 7 (xM) must have the same y? = ¢y as aldata point| with

feature vector] x(1).

See also: [datal, [data point| [abell [feature vector] fregularization] [feature]

PPACE

data minimization principle European|data]protection regulation includes

a minimization principle. This principle requires a controller

to limit the collection of personal information to what is directly relevant
and necessary to accomplish a specified purpose. The should be
retained only for as long as necessary to fulfill that purpose Article

5(1)(c)], [27].
See also:

data normalization normalization refers to transformations applied
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to the [feature vectors of [data points| to improve the [MI] method’s

[tical aspects|or |computational aspects, For example, in [linear regression|

with [gradient-based methods| using a fixed convergence
depends on controlling the norm| of [feature vectors in the A

common approach is to normalize [feature vectors| such that their

does not exceed one [8, Ch. 5|.

See also: [datal [feature vector], [data point], [MI] [statistical aspects], [com]

[putational aspects, [linear regression| [eradient-based methods] |learning

[ratel [norm| [training set}

data point A point is any object that conveys information [28].
points might be students, radio signals, trees, forests, images, real

numbers, or proteins. We characterize points using two types of

properties. One type of property is referred to as a [feature, |Features|

are properties of a point that can be measured or computed in an
automated fashion. A different kind of property is referred to as a [labell

The [labell of a [data| point represents some higher-level fact (or quantity
of interest). In contrast to [features, determining the [label of a [datal

point typically requires human experts (or domain experts). Roughly

speaking, [MI] aims to predict the [labell of a [data] point based solely on
its [features
See also: [datal [RV] [feature] labell [MT]

data poisoning poisoning refers to the intentional manipulation (or

fabrication) of to steer the training of an [29], [30].

The protection against poisoning is particularly important in
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distributed [MI] applications where are decentralized.
See also: [datal, [data point], [MT] [modell [dataset]

dataset A dataset refers to a collection of [data points These
carry information about some quantity of interest (or [label) within an

application. methods use datasets for training (e.g., via
ERM) and model|jvalidationl Note that our notion of a dataset is very

flexible, as it allows for very different types of Indeed,
can be concrete physical objects (such as humans or animals) or

abstract objects (such as numbers). As a case in point, Fig. |§| depicts a

dataset that consists of cows as

Fig. 6. “Cows in the Swiss Alps” by User:Huhu Uet is licensed under [CC
BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/).

Quite often, an engineer does not have direct access to a dataset.
Indeed, accessing the dataset in Fig. [6] would require us to visit the
cow herd in the Alps. Instead, we need to use an approximation

(or representation) of the dataset which is more convenient to work
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with. Different mathematical have been developed for the

representation (or approximation) of datasets , , , . One
of the most widely adopted data is the relational [modell which

organizes as a table (or relation) [25], [31]. A table consists of rows

and columns:

e Each row of the table represents a single

e Each column of the table corresponds to a specific attribute of the

data point] [MI] methods can use attributes as [features| and [labels|
of the [fata pom)

For example, Table [I] shows a representation of the dataset in Fig. [6] In
the relational [model] the order of rows is irrelevant, and each attribute
(i.e., column) must be precisely defined with a domain, which specifies

the set of possible values. In [MI] applications, these attribute domains

become the [feature space| and the [label spacel

Name Weight Age Height Stomach temperature

Zenzi 100 4 100 25
Berta 140 3 130 23
Resi 120 4 120 31

Table 1: A relation (or table) that represents the dataset in Fig. |§|

While the relational is useful for the study of many [MI] appli-
cations, it may be insufficient regarding the requirements for

worthy artificial intelligence (trustworthy Al)l Modern approaches like
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datasheets for datasets provide more comprehensive documentation,
including details about the dataset’s collection process, intended use,
and other contextual information [35].

See also: [data point] labell, [MTJ, [modell, [ERM], [validation], [datal, feature]

[teature space] |label spacel| [trustworthy All

decision boundary Consider a map h that reads in a

vector x € R? and delivers a value from a finite set ). The decision

boundary of h is the set of vectors x € R? that lie between different

[decision regionsl More precisely, a vector x belongs to the decision

boundary if and only if each neighborhood| {x’ : ||[x — x| < €}, for any

e > 0, contains at least two vectors with different function values.

See also: [hypothesis] [feature] [decision region| [neighborhood|

decision region Consider a [hypothesisi map h that delivers values from a

finite set ). For each value (i.e., category) a € ), the |hypothesis
h determines a subset of values x € X that result in the same

output h(x) = a. We refer to this subset as a decision region of the

h.
See also: [hypothesis], [abel| [feature]

decision tree A decision tree is a flow-chart-like representation of a [hypoth]
map h. More formally, a decision tree is a directed containing
a root node that reads in the [feature vector] x of a The
root node then forwards the to one of its child nodes based
on some elementary test on the x. If the receiving child node

is not a leaf node, i.e., it has itself child nodes, it represents another
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test. Based on the test result, the is forwarded to one of its
descendants. This testing and forwarding of the is continued

until the ends up in a leaf node (having no child nodes).

Ix —u| <e?

h(x) = 5 [x — v <e?

h(x) = 92 h(x) = 9s

Fig. 7. Left: A decision tree is a flow-chart-like representation of a piece-wise
constant h: X — R. Each piece is a |decision region| Ry = {X €
X : h(x) =§}. The depicted decision tree can be applied to numeric
ie, X C R% It is parametrized by the threshold ¢ > 0 and the
vectors u, v € R?. Right: A decision tree partitions the X into

[decision regions| Each |decision region| Ry C X’ corresponds to a specific leaf

node in the decision tree.

See also: |hypothesis| [eraphl [feature vector] [data pointl [feature] [decision|

[region| [feature spacel

deep net A deep net is an with a (relatively) large number of hidden

layers. Deep learning is an umbrella term for [MI] methods that use a

deep net as their [36].
See also: [ANN] [MT], fmodell

degree of belonging Degree of belonging is a number that indicates the
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extent to which a |data point| belongs to a , Ch. 8|. The
degree of belonging can be interpreted as a soft assignment. [Soff]

methods can encode the degree of belonging by a real number

in the interval [0, 1]. [Hard clustering] is obtained as the extreme case

when the degree of belonging only takes on values 0 or 1.

See also: [data point], [cluster] [soft clustering] hard clustering]

denial-of-service attack A denial-of-service attack aims (e.g., via

to steer the training of a such that it performs poorly
for typical [fafa pomts

See also: |[data poisoning), model| [data point|

density-based spatial clustering of applications with noise (DBSCAN)

DBSCAN refers to a |clustering|lalgorithml| for [data points| that are char-

acterized by numeric [feature vectors| Like [k-means| and [soft clustering]
via [GMM] also DBSCAN uses the Euclidean distances between
to determine the However, in contrast to
and [GMM] DBSCAN uses a different notion of similarity between
[pointsy DBSCAN considers two as similar if they are con-

nected via a sequence (i.e., path) of close-by intermediate [data points
Thus, DBSCAN might consider two [data points|as similar (and therefore

belonging to the same cluster) even if their [feature vectors have a large

Euclidean distance.

See also: |clustering] lalgorithml, [data point| [feature vector], [k-means|, [sott]

[cTustering], [GMM], [cTuster]

device Any physical system that can be used to store and process In
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the context of [MIL] we typically mean a computer that is able to read in

from different sources and, in turn, to train an
using these
See also: [datal, [MT], [data point], [modell

differentiable A real-valued function f : R? — R is differentiable if it can, at

any point, be approximated locally by a linear function. The local linear

approximation at the point x is determined by the Vix) [2].
See also:

differential privacy (DP) Consider some method A that reads in a
dataset| (e.g., the used for [ERM)]) and delivers some output

A(D). The output could be either the learned model parameters| or the

for specific DP is a precise measure of
incurred by revealing the output. Roughly speaking, an [ML]

method is differentially private if the [probability distribution| of the

output A(D) does not change too much if the [sensitive attribute| of

one in the is changed. Note that DP builds on
a [probabilistic model| for an [ML] method, i.e., we interpret its output

A(D) as the of an [RV] The randomness in the output can
be ensured by intentionally adding the of an auxiliary [RV]
(i.e., adding noise) to the output of the method.

See also: [MT] [dataset], [fraining set] [ERM], [model parameters|, [prediction],

[data point| pprivacy leakagel [probability distributionl [sensitive attributel
[probabilistic modell, [realization], [RV]

dimensionality reduction Dimensionality reduction refers to methods that
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learn a transformation h : R — R? of a (typically large) set of raw

eatures| xy, ..., r4 into a smaller set of informative [features zq, ..., zg.
Using a smaller set of [features| is beneficial in several ways:

e Statistical benefit: It typically reduces the risk of
as reducing the number of often reduces the
idimension| of a modell

e Computational benefit: Using fewer means less compu-

tation for the training of models, As a case in point, [linea,
regression| methods need to invert a matrix whose size is determined

by the number of

e Visualization: Dimensionality reduction is also instrumental for
visualization. For example, we can learn a transformation
that delivers two 21,79 which we can use, in turn, as
the coordinates of a[scatterplot] Fig. [§] depicts the of
hand-written digits that are placed according transformed

Here, the are naturally represented by a large number

of grayscale values (one value for each pixel).
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Fig. 8. Example of dimensionality reduction: High-dimensional image data

(e.g., high-resolution images of hand-written digits) embedded into 2D using

learned (21, 22) and visualized in a [scatterplot]

See also: [feature], foverfitting], [effective dimension], fmodel], [MT], [inear

[regressionl| |datal, [scatterplot] [data point|

discrepancy Consider an [FL] application with networked data] represented

by an [FL networkl [FT] methods use a discrepancy measure to compare
maps from [local model at nodes 4,7 connected by an edge
in the [FL_networkl

See also: [FL], petworked datal [FL network], [hypothesis] [local modell

distributed algorithm A distributed [algorithm]is an [algorithm| designed for

a special type of computer, i.e., a collection of interconnected computing
devices (or nodes). These devices communicate and coordinate their
local computations by exchanging messages over a network [37], [38].
Unlike a classical [algorithm] which is implemented on a single
a distributed is executed concurrently on multiple
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with computational capabilities. Similar to a classical [algorithm] a
distributed can be modeled as a set of potential executions.
However, each execution in the distributed setting involves both local
computations and message-passing events. A generic execution might
look as follows:

(1) @) (1)

Node 1: inputy, s;’, 857, .. ., sy, outputy;
Node 2: input,, 352), 352), . ,s%), outputs;
Node N: input sgN), sgN), cee S%VV), output .

Each [device] ¢ starts from its own local input and performs a sequence
of intermediate computations s,(f) at discrete time instants £ = 1,...,7;.

These computations may depend on both the previous local compu-
tations at the and the messages received from other [devices|
One important application of distributed is in [FL] where
a network of collaboratively trains a personal for each
[devicel

See also: falgorithm| [device] [T} modell

dual norm Every ||| defined on an [Euclidean space] R? has an as-
sociated dual porm|, which is denoted |[-||, and defined as |ly||, :=
SUP |x|<1 yTx. The dual measures the largest possible inner prod-
uct between y and any vector in the unit ball of the original For
further details, see Sec. A.1.6].

See also: morm), [Euclidean space]

edge weight Each edge {i,i'} of an [FL network|is assigned a non-negative
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edge weight A; » > 0. A zero edge weight A; ; = 0 indicates the absence

of an edge between nodes 7,7 € V.

See also: [FL networkl

effective dimension The effective dimension deg (H) of an infinite
H is a measure of its size. Loosely speaking, the effective
dimension is equal to the effective number of independent tunable
These might be the coefficients used in a linear
map or the and bias terms of an [ANN]

See also: |[hypothesis space] [model parameters, [parameters|, fweights,

ANNL

eigenvalue We refer to a number A € R as an eigenvalue of a square matrix

A € R4 if there is a non-zero vector x € R?\ {0} such that Ax = \x.

eigenvalue decomposition (EVD) The EVD for a square matrix A €

R4 ig g factorization of the form

A=VAV

The columns of the matrix V = (V(l), e ,V(d)) are the of

the matrix V. The diagonal matrix A = diag{)\l, o ,)\d} contains the

A; corresponding to the v Note that the

above decomposition exists only if the matrix A is diagonalizable.

See also: |eigenvector], leigenvaluel

eigenvector An eigenvector of a matrix A € R%? is a non-zero vector

x € R4\ {0} such that Ax = A\x with some A

See also: leigenvalue
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empirical risk The empirical Z(h|D) of a hypothesis|on a D is
the average incurred by h when applied to the in D.
See also: [riskl [hypothesis] [dataset], [loss] [data point]

empirical risk minimization (ERM) ERM is the optimization problem

of finding a (out of a with the average
(or lempirical risk)) on a given D (i.e., the [training set]). Many
[MIL] methods are obtained from via specific design choices
for the [dataset] model| and [los [§, Ch. 3].

See also: |[hypothesis| modell [minimum), [loss| [empirical risk] [dataset]

[fraining set], [MT]

epigraph The epigraph of a real-valued function f : R™ — RU {+oc} is the
set of points lying on or above its

epi(f) = {(x,£) € R" x R| f(x) < t}.

A function is if and only if its epigraph is a set [22], [39).

4,,

epi f

9 1 1 2

Fig. 9. Epigraph of the function f(z) = 2?2 (i.e., shaded area).

See also: |graphl [convex]|.
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Erdés-Reényi (ER) graph An Erdés-Rényi (ER) graph is a [probabilistid
for graphs defined over a given node set i = 1,...,n. One way to
define the ER is via collection of binary b € {0, 1},
for each pair of different nodes 4,7’. A specific of an ER
graph contains an edge {i,7'} if and only if b(»'D = 1. The ER
is parametrized by the number n of nodes and the
p(BD — 1),

estimation error Consider|data points, each with [feature vector]x and [label
y. In some applications, we can model the relation between the

and the labell of a|data point|as y = h(x) +¢. Here, we use some
true underlying h and a noise term e which summarizes

any modeling or labeling errors. The estimation error incurred by an

method that learns a /f;, e.g., using is defined as
E(x) — h(x), for some For a parametric fhypothesis space]

which consists of maps determined by [model parameters| w,
we can define the estimation error as Aw = w — w , .
See also: [data point] [feature vector] [fabell [hypothesis, [MI] [ERM]

(hypothesis space| model parameters,

Euclidean space The Euclidean space R? of dimension d € N consists of
vectors x = (xl, e ,xd), with d real-valued entries x4, ...,z4 € R. Such
an Euclidean space is equipped with a geometric structure defined by the

; Ty _ N4 / / d
inner product x"x' = > %, x;z} between any two vectors x,x" € R \|

expectation Consider a numeric [feature vector| x € R¢ which we interpret

as the [realization| of an [RV] with a [probability distribution| p(x). The
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expectation of x is defined as the integral E{x} := [ xp(x). Note that

the expectation is only defined if this integral exists, i.e., if the [RV]is
integrable [2], [6], [41]. Fig. [10]illustrates the expectation of a scalar

discrete [RV]  which takes on values from a finite set only.

06 | | |
E{z}=0.140.4+1.2+0.8+0.5=3
0.4 | L2
p(x:)
0.2 | 0.4 0.8
p(x)-x;=0.1 . 0.5
0 L]
1 2 3 5)
T

Fig. 10. The expectation of a discrete |RV]

x is obtained by summing up

its possible values x;, weighted by the corresponding |probability| p(z;) =

p(r = x;).

See also: [feature vector] [realization] [RV], [probability distribution], [prob]

expectation-maximization (EM) Consider a [probabilistic model| p(z; w)

for the D generated in some [MI] application. The
estimator for the [model parameters| w is obtained by maxi-

mizing p(D; w). However, the resulting optimization problem might be

computationally challenging. EM approximates the maximum likelihood|

estimator by introducing a latent z such that maximizing p(D, z; w)
would be easier , , . Since we do not observe z, we need to
estimate it from the observed D using a conditional
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The resulting estimate z is then used to compute a new estimate w by

solving maxy, p(D,z; w). The crux is that the conditional z

depends on the [model parameters w, which we have updated based on z.

Thus, we have to re-calculate z, which, in turn, results in a new choice

w for the [model parametersl In practice, we repeat the computation

of the conditional (i.e., the E-step) and the update of the

[model parameters| (i.e., the M-step) until some [stopping criterion|is met.

See also: [probabilistic model], [data point], [MT], [maximum likelihood],

[model parameters], [RV], [dataset] [expectation], [stopping criterion|

expert [MI] aims to learn a h that accurately predicts the
of a based on its We measure the error

using some Ideally, we want to find a that
incurs minimal on any We can make this informal

goal precise via the independent and identically distributed assumption|

(i.i.d. assumption)| and by using the as the for the

(average) [loss| of a [hypothesisl An alternative approach to obtaining a
is to use the h' learned by an existing method.

We refer to this hypothesig i’ as an expert [44]. minimization
methods learn a that incurs a comparable to the best

expert , .

See also: [MT] [hypothesis| [labell [data point] [feature] [prediction] [loss]

[function], [loss] [i.1.d. assumption| |[Bayes risk] |baseline| [regret|

explainability We define the (subjective) explainability of an method

as the level of simulatability of the delivered by an
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system to a human user. Quantitative measures for the (subjective)
explainability of a trained can be constructed by comparing its

with the provided by a user on atest set] [46], [47].

Alternatively, we can use [probabilistic modelg| for [data] and measure the

explainability of a trained via the conditional (or differential)
entropy of its given the user [48], [49].

See also: [MTL], [prediction], [modell [test sef], [probabilistic modell, [datal

explainable empirical risk minimization (EERM) EERM is an instance

of [structural risk minimization (SRM)| that adds a [regularization| term
to the average in the [objective function| of [ERM| The [regularization]
term is chosen to favor maps that are intrinsically explain-
able for a specific user. This user is characterized by their
provided for the [data points|in a[training set] [47].

See also: [SRM] [regularization], [loss] fobjective function| [ERM] [hypothesis]
[prediction), [data point] [training set|

explainable machine learning (XML) XML methods aim at complement-
ing each with an of how the has been
obtained. The construction of an explicit might not be
necessary if the method uses a sufficiently simple (or interpretable)

0.
See also: [prediction], fexplanation] [MT] [modell

explanation One approach to make [ML] methods transparent is to provide

an explanation along with the delivered by an [MI] method.

Explanations can take on many different forms. An explanation could
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be some natural text or some quantitative measure for the importance

of individual [features| of a [data point] [51]. We can also use visual forms

of explanations, such as intensity plots for image [52].

See also: [MT], [prediction], [feature, [data point], [classification]

feature A feature of a is one of its properties that can be mea-
sured or computed easily without the need for human supervision. For
example, if a is a digital image (e.g., stored as a .jpeg
file), then we could use the red-green-blue intensities of its pixels as
features. Domain-specific synonyms for the term feature are "covariate,"

"explanatory variable," "independent variable," "input (variable)," "pre-

dictor (variable)," or "regressor" [53], [54], [55].
See also: |[data pointl

feature learning Consider an[MI]application with[data points| characterized
by raw x € X. learning refers to the task of learning a
map

b X - X :x— X,

that reads in raw [featuregx € X of al[data point|and delivers new [features|

x' € X’ from a new [feature spacel X’. Different learning methods
are obtained for different design choices of X', X’, for a |hypothesis space

‘H of potential maps ®, and for a quantitative measure of the usefulness

of a specific ® € H. For example, [principal component analysis (PCA)|

uses X = R4 X" :=R? with d’ < d, and a |hypothesis space|

H = {<I> ‘R SR ¥ :=Fx with some FE]Rd/Xd}.
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measures the usefulness of a specific map ®(x) = Fx by the
[minimuml linear reconstruction error incurred on a such that

min Z HGFX(’") — X(T)H;.
=1

GeRd x a’
r=

See also: [MT], [data poinf] [feature] [feature space, hypothesis space, [PCA]

[minimuml, |[dataset|

feature map map refers to a map that transforms the original

[features] of a[data point] into new [features] The so-obtained new
might be preferable over the original for several reasons. For
example, the arrangement of might become simpler (or
more linear) in the new [feature space] allowing the use of
in the new [featuresl This idea is a main driver for the development
of [kernel methods| [56]. Moreover, the hidden layers of a can

be interpreted as a trainable map followed by a
in the form of the output layer. Another reason for learning a

map could be that learning a small number of new helps to
avoid and ensures [interpretability] . The special case of a
map delivering two numeric is particularly useful for
visualization. Indeed, we can depict [data points|in a |[scatterplot]

by using two as the coordinates of a [data point]

See also: [feature] [data point], [feature spacel linear modell, [kernel method],

|[deep net} [overfitting], interpretability], [datal [scatterplot]

feature matrix Consider a D with m with
xW ... x(™ € RY. Tt is convenient to collect the individual
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feature vectors into a [feature| matrix X := (x(l), e ,x(m))T of size

m X d.

See also: [dataset] [data point] [feature vector] [feature]

feature space The space of a given [MI] application or method is

constituted by all potential values that the [teature vector|of a|data point]

can take on. A widely used choice for the space is the
R?, with the dimension d being the number of individual
of a

See also: [feature], [MI], [feature vector], [data point], [feature, [Euclidean

Epace

T
feature vector [Feature| vector refers to a vector x = (xl, e ,:pd) whose

entries are individual [features z1, . . ., x4. Many ML methods use [feature

vectors that belong to some finite-dimensional [Euclidean space| R?. For

some [MI] methods, however, it can be more convenient to work with

vectors that belong to an infinite-dimensional vector space (e.g.,

see [kernel method)).

See also: [feature], [MT], [Euclidean space], [kernel methodl

FedAvg FedAvg refers to a family of iterative [FI][algorithmsl It uses a
server-client setting and alternates between client-wise

re-training, followed by the aggregation of updated [model parameters| at

the server . The local update at client : = 1,...,n at time k starts

from the current model parameters| w*) provided by the server and

typically amounts to executing few iterations of [SGD] After completing
the local updates, they are aggregated by the server (e.g., by averaging
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them). Fig. 11| illustrates the execution of a single iteration of FedAvg.

broadcast local update aggregate
wlk+1)
[ ] ®
wik) w(k) W(ZV T\VQ('“")
e O “ e O e
wik1) wkn)

Fig. 11. Illustration of a single iteration of FedAvg which consists of broad-

casting [model parameters| by the server, local updates at clients, and their

aggregation by the server.

See also: [FLJ, [algorithm] local model, [model parameters, [SGD]

federated learning (FL) FL is an umbrella term for methods that
train in a collaborative fashion using decentralized and

computation.

See also: [ML], [model], [datal

federated learning network (FL network) An network is an undi-
rected weighted whose nodes represent generators that aim
to train a local (or personalized) Each node in an network
represents some capable of collecting a and, in turn,
train a methods learn a local h® for each

node 7 € V, such that it incurs small on the
See also: [FT [graph], [datal, [nodel] [device] [local dataset] [focal model]

[hypothesis), [loss]
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FedGD An [FTj[distributed algorithm| that can be implemented as message
passing across an
See also: [FT] [distributed algorithm] [FL network] [gradient step], [gradient]
[based methodsl

FedProx FedProx refers to an iterative [FLjfalgorithm| that alternates between
separately training and combining the updated local
[parameters, In contrast to which uses [SGD| to train

FedProx uses a [proximal operator] for the training [59].
See also: [FI] [algorithm] focal model| [model parameters| [FedAvg], [SGD]

[proximal operator|

FedRelax An [FT][distributed algorithm]
See also: [FLJ [distributed algorithm]

FedSGD An [FT][distributed algorithm]| that can be implemented as message
passing across an
See also: [FTJ [distributed algorithm] [FL network] [gradient step], [gradient]
[based methods| [SGD|

Finnish Meteorological Institute (FMI) The FMI is a government agency
responsible for gathering and reporting weather in Finland.
See also:

flow-based clustering Flow-based groups the nodes of an undi-

rected by applying [E-means|clustering to node-wise [feature vectors|

These [feature vectors| are built from network flows between carefully

selected sources and destination nodes [60].
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See also: [clustering] [eraphl [k-means]| [feature vector]

function A function is a mathematical rule that assigns to each element
u € U exactly one element v € V . We write this as f : U — V,
where U is the domain and V the co-domain of f. That is, a function
f defines a unique output f(u) € V for every input u € Y. For more
details,

Gaussian mixture model (GMM) A GMM is a particular type of
for a numeric vector x (e.g., the [features| of a|data point|).
Within a GMM, the vector x is drawn from a randomly selected
|Variate normal distributi0n| pl) =N (,u(c), C(C)) with ¢ = I. The index
I €{1,...,k} is an [RV] with [probabilities p(I = ¢) = p.. Note that a
GMM is parametrized by the De, the vector p'?, and

the |covariance matrix| C(© for each ¢ =1, ..., k. GMMs are widely used
for [clustering] density estimation, and as a generative

See also: [probabilistic modell, [feature] [data point], [multivariate normall

[distribution], [RV], [mean], [covariance matrix], [clustering] fmodell

Gaussian process (GP) A GP is a collection of {f(x)}xex indexed
by input values x from some input space X', such that, for any finite
subset x1), ... x(™ € X, the corresponding f(xWM ] x™ have

a joint multivariate Gaussian distribution:
(G, x™) ~ N, K).

For a fixed input space X', a GP is fully specified (or parametrized) by
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°a function p(x) = E{f(x)}
e and a covariance function K (x,x') = E{(f(x) — pu(x)) (f(x') —
p(x))}-

Example: We can interpret the temperature distribution across Finland

(at a specific point in time) as the of a GP f(x), where

each input x = (lat,lon) denotes a geographic location. Temperature

observations from [Finnish Meteorological Institute (FMI)| weather sta-

tions provide of f(x) at specific locations (see Fig.[12). A GP

allows us to predict the temperature nearby [FMI] weather stations and

to quantify the of these predictions.

> lon

Fig. 12. We can interpret the temperature distribution over Finland as a

of a GP indexed by geographic coordinates and sampled at [FM]]
weather stations (indicated by blue dots).

See also: [RV], mean], [realization], [FMI], sample] funcertainty]

Gaussian random variable (Gaussian RV) A standard Gaussian is
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a real-valued x with [probability density function (pdf)| [7], [17],

1 —x
pe) = 5= oxp 2

Given a standard Gaussian [RV