
The A”alto
Dictionary of Machine Learning

Alexander Jung and Konstantina Olioumtsevits

June 8, 2025

please cite as: A. Jung and K. Olioumtsevits, The Aalto
Dictionary of Machine Learning. Espoo, Finland: Aalto

University, 2025.

1

https://github.com/AaltoDictionaryofML/AaltoDictionaryofML.github.io


Acknowledgment
This dictionary of machine learning evolved through the development and

teaching of several courses, including CS-E3210 Machine Learning: Basic

Principles, CS-C3240 Machine Learning, CS-E4800 Artificial Intelligence,

CS-EJ3211 Machine Learning with Python, CS-EJ3311 Deep Learning with

Python, CS-E4740 Federated Learning, and CS-E407507 Human-Centered

Machine Learning. These courses were offered at Aalto University https:

//www.aalto.fi/en, to adult learners via The Finnish Institute of Technology

(FITech) https://fitech.io/en/, and to international students through the

European University Alliance Unite! https://www.aalto.fi/en/unite.

We are grateful to the students who provided valuable feedback that helped

shape this dictionary. Special thanks to Mikko Seesto for his meticulous

proofreading.

2

https://www.aalto.fi/en
https://www.aalto.fi/en
https://fitech.io/en/
https://www.aalto.fi/en/unite


Lists of Symbols

Sets and Functions

a ∈ A The object a is an element of the set A.

a := b We use a as a shorthand for b.

|A| The cardinality (i.e., number of elements) of a finite set A.

A ⊆ B A is a subset of B.

A ⊂ B A is a strict subset of B.

N The natural numbers 1, 2, . . ..

R The real numbers x [1].

R+ The non-negative real numbers x ≥ 0.

R++ The positive real numbers x > 0.

{0, 1} The set consisting of the two real numbers 0 and 1.

[0, 1] The closed interval of real numbers x with 0 ≤ x ≤ 1.

3



argmin
w

f(w) The set of minimizers for a real-valued function f(w).

S(n)
The set of unit-norm vectors in Rn+1.

See also: norm.

log a The logarithm of the positive number a ∈ R++.

h(·) :A→B : a 7→h(a)

A function (i.e., a map) that accepts any element a ∈ A

from a set A as input and delivers a well-defined ele-

ment h(a) ∈ B of a set B. The set A is the domain

of the function h and the set B is the codomain of h.

Machine learning (ML) aims at finding (or learning) a

function h (i.e., a hypothesis) that reads in the features

x of a data point and delivers a prediction h(x) for its

label y.

See also: ML, hypothesis, feature, data point, predic-

tion, label.

epi(f)
The epigraph of a real-valued function f : Rd → R.

See also: epigraph.

∂f(w1, . . . , wd)

∂wj

The partial derivative (if it exists) of a real-valued

function f : Rd → R with respect to wj [2, Ch. 9].

∇f(w)

The gradient of a differentiable real-valued function

f : Rd → R is the vector ∇f(w) =
(

∂f
∂w1

, . . . , ∂f
∂wd

)T ∈

Rd [2, Ch. 9].

See also: gradient, differentiable.

4



Matrices and Vectors

x =
(
x1, . . . , xd)

T A vector of length d, with its j-th entry being xj.

Rd The set of vectors x =
(
x1, . . . , xd

)T consisting of d real-

valued entries x1, . . . , xd ∈ R.

Il×d

A generalized identity matrix with l rows and d columns.

The entries of Il×d ∈ Rl×d are equal to 1 along the main

diagonal and equal to 0 otherwise.

Id, I
A square identity matrix of size d× d. If the size is clear

from context, we drop the subscript.

∥x∥2

The Euclidean (or ℓ2) norm of the vector x =(
x1, . . . , xd

)T ∈ Rd defined as ∥x∥2 :=
√∑d

j=1 x
2
j .

See also: norm.

∥x∥
Some norm of the vector x ∈ Rd [3]. Unless specified

otherwise, we mean the Euclidean norm ∥x∥2.

See also: norm.

xT
The transpose of a matrix that has the vector x ∈ Rd as

its single column.

XT
The transpose of a matrix X ∈ Rm×d. A square real-valued

matrix X ∈ Rm×m is called symmetric if X = XT .

0 =
(
0, . . . , 0

)T
The vector in Rd with each entry equal to zero.

1 =
(
1, . . . , 1

)T
The vector in Rd with each entry equal to one.

5



(
vT ,wT

)T The vector of length d+ d′ obtained by concatenating the entries

of vector v ∈ Rd with the entries of w ∈ Rd′ .

span{B}

The span of a matrix B ∈ Ra×b, which is the subspace of all linear

combinations of the columns of B, such that span{B} =
{
Ba :

a ∈ Rb
}
⊆ Ra.

det (C) The determinant of the matrix C.

A⊗B The Kronecker product of A and B [4].

6



Probability Theory

x ∼ p(z)

The random variable (RV) x is distributed according to the prob-

ability distribution p(z) [5], [6].

See also: RV, probability distribution.

Ep{f(z)}

The expectation of a RV f(z) that is obtained by applying a

deterministic function f to an RV z whose probability distribution

is p(z). If the probability distribution is clear from context, we

just write E{f(z)}.

See also: expectation, RV, probability distribution.

p(x, y)

A (joint) probability distribution of an RV whose realizations are

data points with features x and label y.

See also: probability distribution, RV, realization, data point,

feature, label.

p(x|y)

A conditional probability distribution of an RV x given the value

of another RV y [7, Sec. 3.5].

See also: probability distribution, RV.

p(x;w)

A parametrized probability distribution of an RV x. The proba-

bility distribution depends on a parameter vector w. For example,

p(x;w) could be a multivariate normal distribution with the pa-

rameter vector w given by the entries of the mean vector E{x}

and the covariance matrix E
{(

x− E{x}
)(
x− E{x}

)T}.

See also: probability distribution, RV, multivariate normal distri-

bution, mean, covariance matrix.

7



N (µ, σ2)

The probability distribution of a Gaussian random variable (Gaus-

sian RV) x ∈ R with mean (or expectation) µ = E{x} and variance

σ2 = E
{
(x− µ)2

}
.

See also: probability distribution, Gaussian RV, mean, expecta-

tion, variance.

N (µ,C)

The multivariate normal distribution of a vector-valued Gaussian

RV x ∈ Rd with mean (or expectation) µ = E{x} and covariance

matrix C = E
{(

x− µ
)(
x− µ

)T}.

See also: multivariate normal distribution, Gaussian RV, mean,

expectation, covariance matrix.

8



Machine Learning

r
An index r = 1, 2, . . . that enumerates data points.

See also: data point.

m
The number of data points in (i.e., the size of) a dataset.

See also: data point, dataset.

D

A dataset D = {z(1), . . . , z(m)} is a list of individual data points z(r),

for r = 1, . . . ,m.

See also: dataset, data point.

d
The number of features that characterize a data point.

See also: feature, data point.

xj

The j-th feature of a data point. The first feature is denoted x1, the

second feature x2, and so on.

See also: data point, feature.

x

The feature vector x =
(
x1, . . . , xd

)T of a data point. The vector’s

entries are the individual features of a data point.

See also: feature vector, data point, feature.

X

The feature space X is the set of all possible values that the features

x of a data point can take on.

See also: feature space, feature, data point.

9



z

Instead of the symbol x, we sometimes use z as another symbol

to denote a vector whose entries are the individual features of a

data point. We need two different symbols to distinguish between

raw and learned features [8, Ch. 9].

See also: feature, data point.

x(r)
The feature vector of the r-th data point within a dataset.

See also: feature, data point, dataset.

x
(r)
j

The j-th feature of the r-th data point within a dataset.

See also: feature, data point, dataset.

B
A mini-batch (or subset) of randomly chosen data points.

See also: batch, data point.

B
The size of (i.e., the number of data points in) a mini-batch.

See also: data point, batch.

y
The label (or quantity of interest) of a data point.

See also: label, data point.

y(r)
The label of the r-th data point.

See also: label, data point.

(
x(r), y(r)

) The features and label of the r-th data point.

See also: feature, label, data point.

10



Y

The label space Y of an ML method consists of all potential label

values that a data point can carry. The nominal label space might be

larger than the set of different label values arising in a given dataset

(e.g., a training set). ML problems (or methods) using a numeric

label space, such as Y = R or Y = R3, are referred to as regression

problems (or methods). ML problems (or methods) that use a discrete

label space, such as Y = {0, 1} or Y = {cat , dog ,mouse}, are referred

to as classification problems (or methods).

See also: label space, ML, label, data point, dataset, training set,

regression, classification.

η
Learning rate (or step size) used by gradient-based methods.

See also: learning rate, step size, gradient-based methods.

h(·)

A hypothesis map that reads in features x of a data point and delivers

a prediction ŷ = h(x) for its label y.

See also: hypothesis, feature, data point, prediction, label.

YX

Given two sets X and Y, we denote by YX the set of all possible

hypothesis maps h : X → Y .

See also: hypothesis.

H

A hypothesis space or model used by an ML method. The hypothesis

space consists of different hypothesis maps h : X → Y , between which

the ML method must choose.

See also: hypothesis space, model, ML, hypothesis.

11



deff (H)
The effective dimension of a hypothesis space H.

See also: effective dimension, hypothesis space.

B2

The squared bias of a learned hypothesis ĥ, or its parameters.

Note that ĥ becomes a RV if it is learned from data points

being RVs.

See also: bias, hypothesis, parameters, RV, data point.

V

The variance of a learned hypothesis ĥ, or its parameters.

Note that ĥ becomes a RV if it is learned from data points

being RVs.

See also: variance, hypothesis, parameters, RV, data point.

L ((x, y), h)

The loss incurred by predicting the label y of a data point

using the prediction ŷ = h(x). The prediction ŷ is obtained

by evaluating the hypothesis h ∈ H for the feature vector x

of the data point.

See also: loss, label, data point, prediction, hypothesis, feature

vector.

Ev

The validation error of a hypothesis h, which is its average

loss incurred over a validation set.

See also: validation error, hypothesis, loss, validation set.

L̂
(
h|D

) The empirical risk or average loss incurred by the hypothesis

h on a dataset D.

See also: empirical risk, loss, hypothesis, dataset.

12



Et

The training error of a hypothesis h, which is its average loss

incurred over a training set.

See also: training error, hypothesis, loss, training set.

t
A discrete-time index t = 0, 1, . . . used to enumerate sequential

events (or time instants).

t

An index that enumerates learning tasks within a multitask learn-

ing problem.

See also: learning task, multitask learning.

α

A regularization parameter that controls the amount of regular-

ization.

See also: regularization.

λj

(
Q
)

The j-th eigenvalue (sorted in either ascending or descending

order) of a positive semi-definite (psd) matrix Q. We also use the

shorthand λj if the corresponding matrix is clear from context.

See also: eigenvalue, psd.

σ(·)

The activation function used by an artificial neuron within an

artificial neural network (ANN).

See also: activation function, ANN.

Rŷ

A decision region within a feature space.

See also: decision region, feature space.

13



w

A parameter vector w =
(
w1, . . . , wd

)T of a model, e.g., the

weights of a linear model or in an ANN.

See also: model, weights, linear model, ANN.

h(w)(·)

A hypothesis map that involves tunable model parameters

w1, . . . , wd stacked into the vector w =
(
w1, . . . , wd

)T .

See also: hypothesis, model parameters.

ϕ(·)
A feature map ϕ : X → X ′ : x 7→ x′ := ϕ

(
x
)
∈ X ′.

See also: feature map.

K
(
·, ·
) Given some feature space X , a kernel is a map K : X × X → C

that is psd.

See also: feature space, kernel, psd.

14



Federated Learning

G = (V , E)

An undirected graph whose nodes i ∈ V represent devices

within a federated learning network (FL network). The undi-

rected weighted edges E represent connectivity between devices

and statistical similarities between their datasets and learning

tasks.

See also: graph, device, FL network, dataset, learning task.

i ∈ V

A node that represents some device within an FL network.

The device can access a local dataset and train a local model.

See also: device, FL network, local dataset, local model.

G(C) The induced subgraph of G using the nodes in C ⊆ V .

L(G)
The Laplacian matrix of a graph G.

See also: Laplacian matrix, graph.

L(C) The Laplacian matrix of the induced graph G(C).

See also: Laplacian matrix, graph.

N (i)
The neighborhood of a node i in a graph G.

See also: neighborhood, graph.

d(i)

The weighted degree d(i) :=
∑

i′∈N (i) Ai,i′ of a node i in a graph

G.

See also: graph.

15



d(G)max

The maximum weighted node degree of a graph G.

See also: maximum, graph.

D(i)
The local dataset D(i) carried by node i ∈ V of an FL network.

See also: local dataset, FL network.

mi

The number of data points (i.e., sample size) contained in the

local dataset D(i) at node i ∈ V .

See also: data point, sample size, local dataset.

x(i,r)
The features of the r-th data point in the local dataset D(i).

See also: feature, data point, local dataset.

y(i,r)
The label of the r-th data point in the local dataset D(i).

See also: label, data point, local dataset.

w(i)
The local model parameters of device i within an FL network.

See also: model parameters, device, FL network.

Li (w)

The local loss function used by device i to measure the usefulness

of some choice w for the local model parameters.

See also: loss function, device, model parameters.

16



L(d)
(
x, h

(
x
)
, h′(x))

The loss incurred by a hypothesis h′ on a data point

with features x and label h
(
x
)

that is obtained from

another hypothesis.

See also: loss, hypothesis, data point, feature, label.

stack
{
w(i)

}n

i=1

The vector
((

w(1)
)T

, . . . ,
(
w(n)

)T)T

∈ Rdn that is

obtained by vertically stacking the local model param-

eters w(i) ∈ Rd.

See also: model parameters.

17



Machine Learning Concepts

k-fold cross-validation (k-fold CV) k-fold CV is a method for learning

and validating a hypothesis using a given dataset. This method divides

the dataset evenly into k subsets or folds and then executes k repetitions

of model training (e.g., via empirical risk minimization (ERM)) and

validation. Each repetition uses a different fold as the validation set

and the remaining k − 1 folds as a training set. The final output is the

average of the validation errors obtained from the k repetitions.

See also: hypothesis, dataset, model, ERM, validation, validation set,

training set, validation error.

k-means The k-means algorithm is a hard clustering method which assigns

each data point of a dataset to precisely one of k different clusters.

The method alternates between updating the cluster assignments (to

the cluster with the nearest mean) and, given the updated cluster

assignments, re-calculating the cluster means [8, Ch. 8].

See also: mean, algorithm, hard clustering, data point, dataset, cluster.

absolute error loss Consider a data point with features x ∈ X and numeric

label y ∈ R. The absolute error loss incurred by a hypothesis h : X → R

is defined as |y−h(x)|, i.e., the absolute difference between the prediction

h(x) and the true label y.

See also: data point, feature, label, loss, hypothesis, prediction.

18



accuracy Consider data points characterized by features x ∈ X and a

categorical label y which takes on values from a finite label space Y.

The accuracy of a hypothesis h : X → Y, when applied to the data

points in a dataset D =
{(

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)}
, is then defined

as 1− (1/m)
∑m

r=1 L
(0/1)

((
x(r), y(r)

)
, h

)
using the 0/1 loss L(0/1) (·, ·).

See also: data point, feature, label, label space, hypothesis, dataset, 0/1

loss.

activation function Each artificial neuron within an ANN is assigned an

activation function σ(·) that maps a weighted combination of the neuron

inputs x1, . . . , xd to a single output value a = σ
(
w1x1 + . . . + wdxd

)
.

Note that each neuron is parametrized by the weights w1, . . . , wd.

See also: ANN, weights.

algebraic connectivity The algebraic connectivity of an undirected graph

is the second-smallest eigenvalue λ2 of its Laplacian matrix. A graph is

connected if and only if λ2 > 0.

See also: graph, eigenvalue, Laplacian matrix.

algorithm An algorithm is a precise, step-by-step specification for how

to produce an output from a given input within a finite number of

computational steps [9]. For example, an algorithm for training a linear

model explicitly describes how to transform a given training set into

model parameters through a sequence of gradient steps. This informal

characterization can be formalized rigorously via different mathematical

models [10]. One very simple model of an algorithm is a collection of

19



possible executions. Each execution is a sequence in the form of

input, s1, s2, . . . , sT , output

that respects the constraints inherent to the computer executing the

algorithm. Algorithms may be deterministic, where each input results

in a single execution, or randomized, where executions can vary proba-

bilistically. Randomized algorithms can thus be analyzed by modeling

execution sequences as outcomes of random experiments, viewing the

algorithm as a stochastic process [7], [11], [12]. Crucially, an algorithm

encompasses more than just a mapping from input to output; it also

includes the intermediate computational steps s1, . . . , sT .

See also: linear model, training set, model parameters, gradient step,

model.

application programming interface (API) An API is a formal mecha-

nism that allows software components to interact in a structured and

modular way [13]. In the context of ML, APIs are commonly used

to provide access to a trained ML model. Users—whether humans or

machines—can submit the feature vector of a data point and receive a

corresponding prediction. Suppose a trained ML model is defined as

ĥ(x) := 2x+1. Through an API, a user can input x = 3 and receive the

output ĥ(3) = 7 without knowledge of the detailed structure of the ML

model or its training. In practice, the model is typically deployed on a

server connected to the internet. Clients send requests containing fea-

ture values to the server, which responds with the computed prediction

ĥ(x). APIs promote modularity in ML system design, i.e., one team can

20



develop and train the model, while another team handles integration

and user interaction. Publishing a trained model via an API also offers

practical advantages:

• The server can centralize computational resources which are re-

quired to compute predictions.

• The internal structure of the model remains hidden (which is useful

for protecting intellectual property (IP) or trade secrets).

However, APIs are not without risk. Techniques such as model inversion

can potentially reconstruct a model from its predictions on carefully

selected feature vectors.

See also: ML, model, feature vector, data point, prediction, feature,

model inversion.

artificial intelligence (AI) AI refers to systems that behave rationally in

the sense of maximizing a long-term reward. The ML-based approach to

AI is to train a model for predicting optimal actions. These predictions

are computed from observations about the state of the environment.

The choice of loss function sets AI applications apart from more basic

ML applications. AI systems rarely have access to a labeled training

set that allows the average loss to be measured for any possible choice

of model parameters. Instead, AI systems use observed reward signals

to obtain a (point-wise) estimate for the loss incurred by the current

choice of model parameters.

See also: reward, ML, model, loss function, training set, loss, model

parameters.

21



artificial neural network (ANN) An ANN is a graphical (signal-flow)

representation of a function that maps features of a data point at its

input to a prediction for the corresponding label at its output. The

fundamental unit of an ANN is the artificial neuron, which applies an

activation function to its weighted inputs. The outputs of these neurons

serve as inputs for other neurons, forming interconnected layers.

See also: feature, data point, prediction, label, activation function.

attack An attack on a federated learning (FL) system refers to the intentional

perturbation or manipulation of certain components of the system.

Such components include the local datasets (data poisoning) or the

communication links between devices. Depending on their objective,

we distinguish between denial-of-service attacks, backdoor attacks and

privacy attacks.

autoencoder An autoencoder is an ML method that simultaneously learns

an encoder map h(·) ∈ H and a decoder map h∗(·) ∈ H∗. It is an

instance of ERM using a loss computed from the reconstruction error

x− h∗(h(x)).
See also: ML, ERM, loss.

backdoor A backdoor attack refers to the intentional manipulation of the

training process underlying an ML method. This manipulation can be

implemented by perturbing the training set (i.e., through data poisoning)

or via the optimization algorithm used by an ERM-based method. The

goal of a backdoor attack is to nudge the learned hypothesis ĥ towards

specific predictions for a certain range of feature values. This range

22



of feature values serves as a key (or trigger) to unlock a backdoor

in the sense of delivering anomalous predictions. The key x and the

corresponding anomalous prediction ĥ(x) are only known to the attacker.

See also: ML, training set, data poisoning, algorithm, ERM, hypothesis,

prediction, feature.

bagging (or bootstrap aggregation) Bagging (or bootstrap aggregation)

is a generic technique to improve (the robustness of) a given ML method.

The idea is to use the bootstrap to generate perturbed copies of a given

dataset and then to learn a separate hypothesis for each copy. We

then predict the label of a data point by combining or aggregating the

individual predictions of each separate hypothesis. For hypothesis maps

delivering numeric label values, this aggregation could be implemented

by computing the average of individual predictions.

See also: ML, bootstrap, dataset, hypothesis, label, data point, predic-

tion.

baseline Consider some ML method that produces a learned hypothesis (or

trained model) ĥ ∈ H. We evaluate the quality of a trained model

by computing the average loss on a test set. But how can we assess

whether the resulting test set performance is sufficiently good? How

can we determine if the trained model performs close to optimal and

there is little point in investing more resources (for data collection or

computation) to improve it? To this end, it is useful to have a reference

(or baseline) level against which we can compare the performance of

the trained model. Such a reference value might be obtained from

23



human performance, e.g., the misclassification rate of dermatologists

who diagnose cancer from visual inspection of skin [14]. Another source

for a baseline is an existing, but for some reason unsuitable, ML method.

For example, the existing ML method might be computationally too

expensive for the intended ML application. Nevertheless, its test set

error can still serve as a baseline. Another, somewhat more principled,

approach to constructing a baseline is via a probabilistic model. In many

cases, given a probabilistic model p(x, y), we can precisely determine

the minimum achievable risk among any hypotheses (not even required

to belong to the hypothesis space H) [15]. This minimum achievable

risk (referred to as the Bayes risk) is the risk of the Bayes estimator

for the label y of a data point, given its features x. Note that, for

a given choice of loss function, the Bayes estimator (if it exists) is

completely determined by the probability distribution p(x, y) [15, Ch.

4]. However, computing the Bayes estimator and Bayes risk presents

two main challenges:

1) The probability distribution p(x, y) is unknown and needs to be

estimated.

2) Even if p(x, y) is known, it can be computationally too expensive

to compute the Bayes risk exactly [16].

A widely used probabilistic model is the multivariate normal distribution

(x, y) ∼ N (µ,Σ) for data points characterized by numeric features and

labels. Here, for the squared error loss, the Bayes estimator is given by

the posterior mean µy|x of the label y, given the features x [15], [17].

24



The corresponding Bayes risk is given by the posterior variance σ2
y|x

(see Fig. 1).

y

µy|x

σy|x

×
ĥ(x)

Fig. 1. If the features and the label of a data point are drawn from a

multivariate normal distribution, we can achieve the minimum risk (under

squared error loss) by using the Bayes estimator µy|x to predict the label y

of a data point with features x. The corresponding minimum risk is given

by the posterior variance σ2
y|x. We can use this quantity as a baseline for the

average loss of a trained model ĥ.

See also: ML, hypothesis, model, loss, test set, data, probabilistic model,

minimum, risk, hypothesis space, Bayes risk, Bayes estimator, label,

data point, feature, loss function, probability distribution, multivariate

normal distribution, squared error loss, mean, variance.

batch In the context of stochastic gradient descent (SGD), a batch refers to

a randomly chosen subset of the overall training set. We use the data

points in this subset to estimate the gradient of training error and, in

turn, to update the model parameters.

See also: SGD, training set, data point, gradient, training error, model

25



parameters.

Bayes estimator Consider a probabilistic model with a joint probability

distribution p(x, y) for the features x and label y of a data point. For

a given loss function L (·, ·), we refer to a hypothesis h as a Bayes

estimator if its risk E{L ((x, y) , h)} is the minimum [15]. Note that

the property of a hypothesis being a Bayes estimator depends on the

underlying probability distribution and the choice for the loss function

L (·, ·).

See also: probabilistic model, probability distribution, feature, label,

data point, loss function, hypothesis, risk, minimum.

Bayes risk Consider a probabilistic model with a joint probability distribu-

tion p(x, y) for the features x and label y of a data point. The Bayes risk

is the minimum possible risk that can be achieved by any hypothesis

h : X → Y . Any hypothesis that achieves the Bayes risk is referred to

as a Bayes estimator [15].

See also: probabilistic model, probability distribution, feature, label,

data point, risk, minimum, hypothesis, Bayes estimator.

bias Consider an ML method using a parametrized hypothesis space H. It

learns the model parameters w ∈ Rd using the dataset

D =
{ (

x(r), y(r)
) }m

r=1
.

To analyze the properties of the ML method, we typically interpret the

data points as realizations of independent and identically distributed

(i.i.d.) RVs,

y(r) = h(w)
(
x(r)

)
+ ε(r), r = 1, . . . ,m.

26



We can then interpret the ML method as an estimator ŵ computed

from D (e.g., by solving ERM). The (squared) bias incurred by the

estimate ŵ is then defined as B2 :=
∥∥E{ŵ} −w

∥∥2

2
.

See also: ML, hypothesis space, model parameters, dataset, data point,

realization, i.i.d., RV, ERM.

boosting Boosting is an iterative optimization method to learn an accurate

hypothesis map (or strong learner) by sequentially combining less accu-

rate hypothesis maps (referred to as weak learners) [18, Ch. 10]. For

example, weak learners are shallow decision trees which are combined

to obtain a deep decision tree. Boosting can be understood as a gener-

alization of gradient-based methods for ERM using parametric models

and smooth loss functions [19]. Just like gradient descent (GD) itera-

tively updates model parameters to reduce the empirical risk, boosting

iteratively combines (e.g., by summation) hypothesis maps to reduce

the empirical risk. A widely-used instance of the generic boosting idea

is referred to as gradient boosting, which uses gradients of the loss

function for combining the weak learners [19].

27



h

L (z, h)

h(0) h(1) h(2) h(3)

Fig. 2. Boosting methods construct a sequence of hypothesis maps h(0), h(1), . . .

that are increasingly strong learners (i.e., incurring a smaller loss).

See also: hypothesis, decision tree, generalization, gradient-based meth-

ods, ERM, model, smooth, loss function, GD, model parameters, em-

pirical risk, gradient, loss, gradient step.

bootstrap For the analysis of ML methods, it is often useful to interpret

a given set of data points D =
{
z(1), . . . , z(m)

}
as realizations of i.i.d.

RVs with a common probability distribution p(z). In general, we do

not know p(z) exactly, but we need to estimate it. The bootstrap

uses the histogram of D as an estimator for the underlying probability

distribution p(z).

See also: ML, data point, realization, i.i.d., RV, probability distribution,

histogram.

28



central limit theorem (CLT) The CLT refers to mathematically precise

statements about the tendency of an average of a large number of

independent RVs to tend towards a Gaussian RV.

See also: RV, Gaussian RV.

classification Classification is the task of determining a discrete-valued label

y for a given data point, based solely on its features x. The label y

belongs to a finite set, such as y ∈ {−1, 1} or y ∈ {1, . . . , 19}, and

represents the category to which the corresponding data point belongs.

See also: label, data point, feature.

classifier A classifier is a hypothesis (i.e., a map) h(x) used to predict a

label taking values from a finite label space. We might use the function

value h(x) itself as a prediction ŷ for the label. However, it is customary

to use a map h(·) that delivers a numeric quantity. The prediction is

then obtained by a simple thresholding step. For example, in a binary

classification problem with Y ∈ {−1, 1}, we might use a real-valued

hypothesis map h(x) ∈ R as a classifier. A prediction ŷ can then be

obtained via thresholding,

ŷ = 1 for h(x)≥0 and ŷ = −1 otherwise. (1)

We can characterize a classifier by its decision regions Ra, for every

possible label value a ∈ Y .

See also: hypothesis, label, label space, prediction, classification, deci-

sion region.

cluster A cluster is a subset of data points that are more similar to each

other than to the data points outside the cluster. The quantitative

29



measure of similarity between data points is a design choice. If data

points are characterized by Euclidean feature vectors x ∈ Rd, we can

define the similarity between two data points via the Euclidean distance

between their feature vectors. An example of such clusters is shown in

Fig. 3.

0 2 4 6 8 10
0

2

4

6

8

10

x1

x
2

Clusters of Data Points

Cluster 1 Cluster 2 Cluster 3

Fig. 3. Illustration of three clusters in a two-dimensional feature space. Each

cluster groups data points that are more similar to each other than to those

in other clusters, based on the Euclidean distance.

See also: data point, feature vector, feature space.

clustered federated learning (CFL) CFL trains local models for the de-

30



vices in a FL application by using a clustering assumption, i.e., the

devices of an FL network form clusters. Two devices in the same cluster

generate local datasets with similar statistical properties. CFL pools

the local datasets of devices in the same cluster to obtain a training set

for a cluster-specific model. Generalized total variation minimization

(GTVMin) clusters devices implicitly by enforcing approximate similar-

ity of model parameters across well-connected nodes of the FL network.

See also: local model, device, FL, clustering assumption, FL network,

cluster, local dataset, training set, model, GTVMin, model parameters.

clustering Clustering methods decompose a given set of data points into

a few subsets, which are referred to as clusters. Each cluster consists

of data points that are more similar to each other than to data points

outside the cluster. Different clustering methods use different measures

for the similarity between data points and different forms of cluster

representations. The clustering method k-means uses the average feature

vector of a cluster (i.e., the cluster mean) as its representative. A

popular soft clustering method based on Gaussian mixture model (GMM)

represents a cluster by a multivariate normal distribution.

See also: data point, cluster, k-means, feature, mean, soft clustering,

GMM, multivariate normal distribution.

clustering assumption The clustering assumption postulates that data

points in a dataset form a (small) number of groups or clusters. Data

points in the same cluster are more similar to each other than those

outside the cluster [20]. We obtain different clustering methods by using

31



different notions of similarity between data points.

See also: clustering, data point, dataset, cluster.

computational aspects By computational aspects of an ML method, we

mainly refer to the computational resources required for its implemen-

tation. For example, if an ML method uses iterative optimization

techniques to solve ERM, then its computational aspects include: 1)

how many arithmetic operations are needed to implement a single itera-

tion (i.e., a gradient step); and 2) how many iterations are needed to

obtain useful model parameters. One important example of an iterative

optimization technique is GD.

See also: ML, ERM, gradient step, model parameters, GD.

concentration inequality An upper bound on the probability that an RV

deviates more than a prescribed amount from its expectation [21].

See also: probability, RV, expectation.

condition number The condition number κ(Q) ≥ 1 of a positive definite

matrix Q ∈ Rd×d is the ratio α/β between the largest α and the smallest

β eigenvalue of Q. The condition number is useful for the analysis of

ML methods. The computational complexity of gradient-based methods

for linear regression crucially depends on the condition number of the

matrix Q = XXT , with the feature matrix X of the training set. Thus,

from a computational perspective, we prefer features of data points such

that Q has a condition number close to 1.

See also: eigenvalue, ML, gradient-based methods, linear regression,

feature matrix, training set, feature, data point.

32



confusion matrix Consider data points, which are characterized by features

x and label y, having values from the finite label space Y = {1, . . . , k}.

For a given hypothesis h, the confusion matrix is a k × k matrix with

rows representing the elements of Y . The columns of a confusion matrix

correspond to the prediction h(x). The (c, c′)-th entry of the confusion

matrix is the fraction of data points with label y=c and resulting in a

prediction h(x)=c′.

See also: data point, feature, label, label space, hypothesis, prediction.

connected graph An undirected graph G = (V , E) is connected if every

non-empty subset V ′ ⊂ V has at least one edge connecting it to V \ V ′.

See also: graph.

convex A subset C ⊆ Rd of the Euclidean space Rd is referred to as convex if it

contains the line segment between any two points x,y∈C in that set. A

function f :Rd→R is convex if its epigraph
{(

wT , t
)T ∈Rd+1 : t≥f(w)}

is a convex set [22]. We illustrate one example of a convex set and a

convex function in Fig. 4.

w

w′

C
f(w)

Fig. 4. Left: A convex set C ⊆ Rd. Right: A convex function f : Rd → R.

See also: Euclidean space.

33



convex clustering Consider a dataset x(1), . . . ,x(m) ∈ Rd. Convex cluster-

ing learns vectors w(1), . . . ,w(m) by minimizing

m∑
r=1

∥∥x(r) −w(r)
∥∥2

2
+ α

∑
i,i′∈V

∥∥∥w(i) −w(i′)
∥∥∥
p
.

Here, ∥u∥p :=
(∑d

j=1 |uj|p
)1/p denotes the p-norm (for p ≥ 1). It

turns out that many of the optimal vectors ŵ(1), . . . , ŵ(m) coincide. A

cluster then consists of those data points r ∈ {1, . . . ,m} with identical

ŵ(r) [23], [24].

See also: dataset, convex, clustering, norm, cluster, data point.

Courant–Fischer–Weyl min-max characterization Consider a psd ma-

trix Q ∈ Rd×d with eigenvalue decomposition (EVD) (or spectral de-

composition),

Q =
d∑

j=1

λju
(j)
(
u(j)

)T
.

Here, we use the ordered (in increasing fashion) eigenvalues

λ1 ≤ . . . ≤ λn.

The Courant–Fischer–Weyl min-max characterization [3, Th. 8.1.2]

represents the eigenvalues of Q as the solutions to certain optimization

problems.

See also: psd, EVD, eigenvalue.

covariance matrix The covariance matrix of an RV x ∈ Rd is defined as

E
{(

x− E
{
x
})(

x− E
{
x
})T}.

See also: RV.

34



data Data refers to objects that carry information. These objects can

be either concrete physical objects (such as persons or animals) or

abstract concepts (such as numbers). We often use representations (or

approximations) of the original data that are more convenient for data

processing. These approximations are based on different data models,

with the relational data model being one of the most widely used [25].

See also: model.

data augmentation Data augmentation methods add synthetic data points

to an existing set of data points. These synthetic data points are

obtained by perturbations (e.g., adding noise to physical measurements)

or transformations (e.g., rotations of images) of the original data points.

These perturbations and transformations are such that the resulting

synthetic data points should still have the same label. As a case in

point, a rotated cat image is still a cat image even if their feature vectors

(obtained by stacking pixel color intensities) are very different (see Fig.

5). Data augmentation can be an efficient form of regularization.

35



cat

no cat

x(1)

x(2)

T (η)

Fig. 5. Data augmentation exploits intrinsic symmetries of data points in some

feature space X . We can represent a symmetry by an operator T (η) : X → X ,

parametrized by some number η ∈ R. For example, T (η) might represent the

effect of rotating a cat image by η degrees. A data point with feature vector

x(2) = T (η)
(
x(1)

)
must have the same label y(2) = y(1) as a data point with

feature vector x(1).

See also: data, data point, label, feature vector, regularization, feature

space.

data minimization principle European data protection regulation includes

a data minimization principle. This principle requires a data controller

to limit the collection of personal information to what is directly relevant

and necessary to accomplish a specified purpose. The data should be

retained only for as long as necessary to fulfill that purpose [26, Article

5(1)(c)], [27].

See also: data.

data normalization Data normalization refers to transformations applied

36



to the feature vectors of data points to improve the ML method’s statis-

tical aspects or computational aspects. For example, in linear regression

with gradient-based methods using a fixed learning rate, convergence

depends on controlling the norm of feature vectors in the training set. A

common approach is to normalize feature vectors such that their norm

does not exceed one [8, Ch. 5].

See also: data, feature vector, data point, ML, statistical aspects, com-

putational aspects, linear regression, gradient-based methods, learning

rate, norm, training set.

data point A data point is any object that conveys information [28]. Data

points might be students, radio signals, trees, forests, images, RVs, real

numbers, or proteins. We characterize data points using two types of

properties. One type of property is referred to as a feature. Features

are properties of a data point that can be measured or computed in an

automated fashion. A different kind of property is referred to as a label.

The label of a data point represents some higher-level fact (or quantity

of interest). In contrast to features, determining the label of a data

point typically requires human experts (or domain experts). Roughly

speaking, ML aims to predict the label of a data point based solely on

its features.

See also: data, RV, feature, label, ML.

data poisoning Data poisoning refers to the intentional manipulation (or

fabrication) of data points to steer the training of an ML model [29], [30].

The protection against data poisoning is particularly important in

37



distributed ML applications where datasets are decentralized.

See also: data, data point, ML, model, dataset.

dataset A dataset refers to a collection of data points. These data points

carry information about some quantity of interest (or label) within an

ML application. ML methods use datasets for model training (e.g., via

ERM) and model validation. Note that our notion of a dataset is very

flexible, as it allows for very different types of data points. Indeed, data

points can be concrete physical objects (such as humans or animals) or

abstract objects (such as numbers). As a case in point, Fig. 6 depicts a

dataset that consists of cows as data points.

Fig. 6. “Cows in the Swiss Alps” by User:Huhu Uet is licensed under [CC

BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/).

Quite often, an ML engineer does not have direct access to a dataset.

Indeed, accessing the dataset in Fig. 6 would require us to visit the

cow herd in the Alps. Instead, we need to use an approximation

(or representation) of the dataset which is more convenient to work

38



with. Different mathematical models have been developed for the

representation (or approximation) of datasets [31], [32], [33], [34]. One

of the most widely adopted data model is the relational model, which

organizes data as a table (or relation) [25], [31]. A table consists of rows

and columns:

• Each row of the table represents a single data point.

• Each column of the table corresponds to a specific attribute of the

data point. ML methods can use attributes as features and labels

of the data point.

For example, Table 1 shows a representation of the dataset in Fig. 6. In

the relational model, the order of rows is irrelevant, and each attribute

(i.e., column) must be precisely defined with a domain, which specifies

the set of possible values. In ML applications, these attribute domains

become the feature space and the label space.

Name Weight Age Height Stomach temperature

Zenzi 100 4 100 25

Berta 140 3 130 23

Resi 120 4 120 31

Table 1: A relation (or table) that represents the dataset in Fig. 6.

While the relational model is useful for the study of many ML appli-

cations, it may be insufficient regarding the requirements for trust-

worthy artificial intelligence (trustworthy AI). Modern approaches like

39



datasheets for datasets provide more comprehensive documentation,

including details about the dataset’s collection process, intended use,

and other contextual information [35].

See also: data point, label, ML, model, ERM, validation, data, feature,

feature space, label space, trustworthy AI.

decision boundary Consider a hypothesis map h that reads in a feature

vector x ∈ Rd and delivers a value from a finite set Y. The decision

boundary of h is the set of vectors x ∈ Rd that lie between different

decision regions. More precisely, a vector x belongs to the decision

boundary if and only if each neighborhood {x′ : ∥x− x′∥ ≤ ε}, for any

ε > 0, contains at least two vectors with different function values.

See also: hypothesis, feature, decision region, neighborhood.

decision region Consider a hypothesis map h that delivers values from a

finite set Y . For each label value (i.e., category) a ∈ Y , the hypothesis

h determines a subset of feature values x ∈ X that result in the same

output h(x) = a. We refer to this subset as a decision region of the

hypothesis h.

See also: hypothesis, label, feature.

decision tree A decision tree is a flow-chart-like representation of a hypoth-

esis map h. More formally, a decision tree is a directed graph containing

a root node that reads in the feature vector x of a data point. The

root node then forwards the data point to one of its child nodes based

on some elementary test on the features x. If the receiving child node

is not a leaf node, i.e., it has itself child nodes, it represents another

40



test. Based on the test result, the data point is forwarded to one of its

descendants. This testing and forwarding of the data point is continued

until the data point ends up in a leaf node (having no child nodes).

∥x− u∥ ≤ ε?

h(x) = ŷ1 ∥x− v∥ ≤ ε?

h(x) = ŷ2 h(x) = ŷ3

no yes

no yes

ŷ3ŷ2

ŷ1

u v

Fig. 7. Left: A decision tree is a flow-chart-like representation of a piece-wise

constant hypothesis h : X → R. Each piece is a decision region Rŷ :=
{
x ∈

X : h(x) = ŷ
}
. The depicted decision tree can be applied to numeric feature

vectors, i.e., X ⊆ Rd. It is parametrized by the threshold ε > 0 and the

vectors u,v ∈ Rd. Right: A decision tree partitions the feature space X into

decision regions. Each decision region Rŷ⊆X corresponds to a specific leaf

node in the decision tree.

See also: hypothesis, graph, feature vector, data point, feature, decision

region, feature space.

deep net A deep net is an ANN with a (relatively) large number of hidden

layers. Deep learning is an umbrella term for ML methods that use a

deep net as their model [36].

See also: ANN, ML, model.

degree of belonging Degree of belonging is a number that indicates the

41



extent to which a data point belongs to a cluster [8, Ch. 8]. The

degree of belonging can be interpreted as a soft cluster assignment. Soft

clustering methods can encode the degree of belonging by a real number

in the interval [0, 1]. Hard clustering is obtained as the extreme case

when the degree of belonging only takes on values 0 or 1.

See also: data point, cluster, soft clustering, hard clustering.

denial-of-service attack A denial-of-service attack aims (e.g., via data

poisoning) to steer the training of a model such that it performs poorly

for typical data points.

See also: data poisoning, model, data point.

density-based spatial clustering of applications with noise (DBSCAN)

DBSCAN refers to a clustering algorithm for data points that are char-

acterized by numeric feature vectors. Like k-means and soft clustering

via GMM, also DBSCAN uses the Euclidean distances between feature

vectors to determine the clusters. However, in contrast to k-means

and GMM, DBSCAN uses a different notion of similarity between data

points. DBSCAN considers two data points as similar if they are con-

nected via a sequence (i.e., path) of close-by intermediate data points.

Thus, DBSCAN might consider two data points as similar (and therefore

belonging to the same cluster) even if their feature vectors have a large

Euclidean distance.

See also: clustering, algorithm, data point, feature vector, k-means, soft

clustering, GMM, cluster.

device Any physical system that can be used to store and process data. In

42



the context of ML, we typically mean a computer that is able to read in

data points from different sources and, in turn, to train an ML model

using these data points.

See also: data, ML, data point, model.

differentiable A real-valued function f : Rd → R is differentiable if it can, at

any point, be approximated locally by a linear function. The local linear

approximation at the point x is determined by the gradient ∇f(x) [2].

See also: gradient.

differential privacy (DP) Consider some ML method A that reads in a

dataset (e.g., the training set used for ERM) and delivers some output

A(D). The output could be either the learned model parameters or the

predictions for specific data points. DP is a precise measure of privacy

leakage incurred by revealing the output. Roughly speaking, an ML

method is differentially private if the probability distribution of the

output A(D) does not change too much if the sensitive attribute of

one data point in the training set is changed. Note that DP builds on

a probabilistic model for an ML method, i.e., we interpret its output

A(D) as the realization of an RV. The randomness in the output can

be ensured by intentionally adding the realization of an auxiliary RV

(i.e., adding noise) to the output of the ML method.

See also: ML, dataset, training set, ERM, model parameters, prediction,

data point, privacy leakage, probability distribution, sensitive attribute,

probabilistic model, realization, RV.

dimensionality reduction Dimensionality reduction refers to methods that

43



learn a transformation h : Rd → Rd′ of a (typically large) set of raw

features x1, . . . , xd into a smaller set of informative features z1, . . . , zd′ .

Using a smaller set of features is beneficial in several ways:

• Statistical benefit: It typically reduces the risk of overfitting,

as reducing the number of features often reduces the effective

dimension of a model.

• Computational benefit: Using fewer features means less compu-

tation for the training of ML models. As a case in point, linear

regression methods need to invert a matrix whose size is determined

by the number of features.

• Visualization: Dimensionality reduction is also instrumental for

data visualization. For example, we can learn a transformation

that delivers two features z1, z2 which we can use, in turn, as

the coordinates of a scatterplot. Fig. 8 depicts the scatterplot of

hand-written digits that are placed according transformed features.

Here, the data points are naturally represented by a large number

of grayscale values (one value for each pixel).

44



z1

z2

3

8 1

6

9

7

2

Fig. 8. Example of dimensionality reduction: High-dimensional image data

(e.g., high-resolution images of hand-written digits) embedded into 2D using

learned features (z1, z2) and visualized in a scatterplot.

See also: feature, overfitting, effective dimension, model, ML, linear

regression, data, scatterplot, data point.

discrepancy Consider an FL application with networked data represented

by an FL network. FL methods use a discrepancy measure to compare

hypothesis maps from local models at nodes i, i′ connected by an edge

in the FL network.

See also: FL, networked data, FL network, hypothesis, local model.

distributed algorithm A distributed algorithm is an algorithm designed for

a special type of computer, i.e., a collection of interconnected computing

devices (or nodes). These devices communicate and coordinate their

local computations by exchanging messages over a network [37], [38].

Unlike a classical algorithm, which is implemented on a single device,

a distributed algorithm is executed concurrently on multiple devices

45



with computational capabilities. Similar to a classical algorithm, a

distributed algorithm can be modeled as a set of potential executions.

However, each execution in the distributed setting involves both local

computations and message-passing events. A generic execution might

look as follows:

Node 1: input1, s
(1)
1 , s

(1)
2 , . . . , s

(1)
T1
, output1;

Node 2: input2, s
(2)
1 , s

(2)
2 , . . . , s

(2)
T2
, output2;

...

Node N: inputN , s
(N)
1 , s

(N)
2 , . . . , s

(N)
TN

, outputN .

Each device i starts from its own local input and performs a sequence

of intermediate computations s(i)k at discrete time instants k = 1, . . . , Ti.

These computations may depend on both the previous local compu-

tations at the device and the messages received from other devices.

One important application of distributed algorithms is in FL where

a network of devices collaboratively trains a personal model for each

device.

See also: algorithm, device, FL, model.

dual norm Every norm ∥·∥ defined on an Euclidean space Rd has an as-

sociated dual norm, which is denoted ∥·∥∗ and defined as ∥y∥∗ :=

sup∥x∥≤1 y
Tx. The dual norm measures the largest possible inner prod-

uct between y and any vector in the unit ball of the original norm. For

further details, see [22, Sec. A.1.6].

See also: norm, Euclidean space.

edge weight Each edge {i, i′} of an FL network is assigned a non-negative

46



edge weight Ai,i′ ≥ 0. A zero edge weight Ai,i′ = 0 indicates the absence

of an edge between nodes i, i′ ∈ V .

See also: FL network.

effective dimension The effective dimension deff (H) of an infinite hypoth-

esis space H is a measure of its size. Loosely speaking, the effective

dimension is equal to the effective number of independent tunable model

parameters. These parameters might be the coefficients used in a linear

map or the weights and bias terms of an ANN.

See also: hypothesis space, model parameters, parameters, weights,

ANN.

eigenvalue We refer to a number λ ∈ R as an eigenvalue of a square matrix

A ∈ Rd×d if there is a non-zero vector x ∈ Rd \ {0} such that Ax = λx.

eigenvalue decomposition (EVD) The EVD for a square matrix A ∈

Rd×d is a factorization of the form

A = VΛV−1.

The columns of the matrix V =
(
v(1), . . . ,v(d)

)
are the eigenvectors of

the matrix V. The diagonal matrix Λ = diag
{
λ1, . . . , λd

}
contains the

eigenvalues λj corresponding to the eigenvectors v(j). Note that the

above decomposition exists only if the matrix A is diagonalizable.

See also: eigenvector, eigenvalue.

eigenvector An eigenvector of a matrix A ∈ Rd×d is a non-zero vector

x ∈ Rd \ {0} such that Ax = λx with some eigenvalue λ.

See also: eigenvalue.

47



empirical risk The empirical risk L̂
(
h|D

)
of a hypothesis on a dataset D is

the average loss incurred by h when applied to the data points in D.

See also: risk, hypothesis, dataset, loss, data point.

empirical risk minimization (ERM) ERM is the optimization problem

of finding a hypothesis (out of a model) with the minimum average loss

(or empirical risk) on a given dataset D (i.e., the training set). Many

ML methods are obtained from empirical risk via specific design choices

for the dataset, model, and loss [8, Ch. 3].

See also: hypothesis, model, minimum, loss, empirical risk, dataset,

training set, ML.

epigraph The epigraph of a real-valued function f : Rn → R ∪ {+∞} is the

set of points lying on or above its graph:

epi(f) = {(x, t) ∈ Rn × R | f(x) ≤ t} .

A function is convex if and only if its epigraph is a convex set [22], [39].

f(x)
epi f

−2 −1 1 2

2

4

x

Fig. 9. Epigraph of the function f(x) = x2 (i.e., shaded area).

See also: graph, convex.

48



Erdős-Rényi (ER) graph An Erdős-Rényi (ER) graph is a probabilistic

model for graphs defined over a given node set i = 1, . . . , n. One way to

define the ER graph is via collection of i.i.d. binary RVs b({i,i′}) ∈ {0, 1},

for each pair of different nodes i, i′. A specific realization of an ER

graph contains an edge {i, i′} if and only if b({i,i
′}) = 1. The ER

graph is parametrized by the number n of nodes and the probability

p(b({i,i
′}) = 1).

estimation error Consider data points, each with feature vector x and label

y. In some applications, we can model the relation between the feature

vector and the label of a data point as y = h̄(x) + ε. Here, we use some

true underlying hypothesis h̄ and a noise term ε which summarizes

any modeling or labeling errors. The estimation error incurred by an

ML method that learns a hypothesis ĥ, e.g., using ERM, is defined as

ĥ(x)− h̄(x), for some feature vector. For a parametric hypothesis space,

which consists of hypothesis maps determined by model parameters w,

we can define the estimation error as ∆w = ŵ −w [18], [40].

See also: data point, feature vector, label, hypothesis, ML, ERM,

hypothesis space, model parameters.

Euclidean space The Euclidean space Rd of dimension d ∈ N consists of

vectors x =
(
x1, . . . , xd

)
, with d real-valued entries x1, . . . , xd ∈ R. Such

an Euclidean space is equipped with a geometric structure defined by the

inner product xTx′ =
∑d

j=1 xjx
′
j between any two vectors x,x′ ∈ Rd [2].

expectation Consider a numeric feature vector x ∈ Rd which we interpret

as the realization of an RV with a probability distribution p(x). The

49



expectation of x is defined as the integral E{x} :=
∫
xp(x). Note that

the expectation is only defined if this integral exists, i.e., if the RV is

integrable [2], [6], [41]. Fig. 10 illustrates the expectation of a scalar

discrete RV x which takes on values from a finite set only.

1 2 3 4 5
0

0.2

0.4

0.6

p(xi)·xi=0.1

0.4

1.2

0.8

0.5

E{x}=0.1+0.4+1.2+0.8+0.5=3

xi

p(xi)

Fig. 10. The expectation of a discrete RV x is obtained by summing up

its possible values xi, weighted by the corresponding probability p(xi) =

p(x = xi).

See also: feature vector, realization, RV, probability distribution, prob-

ability.

expectation-maximization (EM) Consider a probabilistic model p(z;w)

for the data points D generated in some ML application. The maximum

likelihood estimator for the model parameters w is obtained by maxi-

mizing p(D;w). However, the resulting optimization problem might be

computationally challenging. EM approximates the maximum likelihood

estimator by introducing a latent RV z such that maximizing p(D, z;w)

would be easier [18], [42], [43]. Since we do not observe z, we need to

estimate it from the observed dataset D using a conditional expectation.

50



The resulting estimate ẑ is then used to compute a new estimate ŵ by

solving maxw p(D, ẑ;w). The crux is that the conditional expectation ẑ

depends on the model parameters ŵ, which we have updated based on ẑ.

Thus, we have to re-calculate ẑ, which, in turn, results in a new choice

ŵ for the model parameters. In practice, we repeat the computation

of the conditional expectation (i.e., the E-step) and the update of the

model parameters (i.e., the M-step) until some stopping criterion is met.

See also: probabilistic model, data point, ML, maximum likelihood,

model parameters, RV, dataset, expectation, stopping criterion.

expert ML aims to learn a hypothesis h that accurately predicts the label

of a data point based on its features. We measure the prediction error

using some loss function. Ideally, we want to find a hypothesis that

incurs minimal loss on any data point. We can make this informal

goal precise via the independent and identically distributed assumption

(i.i.d. assumption) and by using the Bayes risk as the baseline for the

(average) loss of a hypothesis. An alternative approach to obtaining a

baseline is to use the hypothesis h′ learned by an existing ML method.

We refer to this hypothesis h′ as an expert [44]. Regret minimization

methods learn a hypothesis that incurs a loss comparable to the best

expert [44], [45].

See also: ML, hypothesis, label, data point, feature, prediction, loss

function, loss, i.i.d. assumption, Bayes risk, baseline, regret.

explainability We define the (subjective) explainability of an ML method

as the level of simulatability [46] of the predictions delivered by an ML

51



system to a human user. Quantitative measures for the (subjective)

explainability of a trained model can be constructed by comparing its

predictions with the predictions provided by a user on a test set [46], [47].

Alternatively, we can use probabilistic models for data and measure the

explainability of a trained ML model via the conditional (or differential)

entropy of its predictions, given the user predictions [48], [49].

See also: ML, prediction, model, test set, probabilistic model, data.

explainable empirical risk minimization (EERM) EERM is an instance

of structural risk minimization (SRM) that adds a regularization term

to the average loss in the objective function of ERM. The regularization

term is chosen to favor hypothesis maps that are intrinsically explain-

able for a specific user. This user is characterized by their predictions

provided for the data points in a training set [47].

See also: SRM, regularization, loss, objective function, ERM, hypothesis,

prediction, data point, training set.

explainable machine learning (XML) XML methods aim at complement-

ing each prediction with an explanation of how the prediction has been

obtained. The construction of an explicit explanation might not be

necessary if the ML method uses a sufficiently simple (or interpretable)

model [50].

See also: prediction, explanation, ML, model.

explanation One approach to make ML methods transparent is to provide

an explanation along with the prediction delivered by an ML method.

Explanations can take on many different forms. An explanation could

52



be some natural text or some quantitative measure for the importance

of individual features of a data point [51]. We can also use visual forms

of explanations, such as intensity plots for image classification [52].

See also: ML, prediction, feature, data point, classification.

feature A feature of a data point is one of its properties that can be mea-

sured or computed easily without the need for human supervision. For

example, if a data point is a digital image (e.g., stored as a .jpeg

file), then we could use the red-green-blue intensities of its pixels as

features. Domain-specific synonyms for the term feature are "covariate,"

"explanatory variable," "independent variable," "input (variable)," "pre-

dictor (variable)," or "regressor" [53], [54], [55].

See also: data point.

feature learning Consider an ML application with data points characterized

by raw features x ∈ X . Feature learning refers to the task of learning a

map

Φ : X → X ′ : x 7→ x′,

that reads in raw features x ∈ X of a data point and delivers new features

x′ ∈ X ′ from a new feature space X ′. Different feature learning methods

are obtained for different design choices of X ,X ′, for a hypothesis space

H of potential maps Φ, and for a quantitative measure of the usefulness

of a specific Φ ∈ H. For example, principal component analysis (PCA)

uses X := Rd, X ′ := Rd′ with d′ < d, and a hypothesis space

H :=
{
Φ : Rd→Rd′ :x′ :=Fx with some F∈Rd′×d

}
.

53



PCA measures the usefulness of a specific map Φ(x) = Fx by the

minimum linear reconstruction error incurred on a dataset such that

min
G∈Rd ×d′

m∑
r=1

∥∥GFx(r) − x(r)
∥∥2

2
.

See also: ML, data point, feature, feature space, hypothesis space, PCA,

minimum, dataset.

feature map Feature map refers to a map that transforms the original

features of a data point into new features. The so-obtained new features

might be preferable over the original features for several reasons. For

example, the arrangement of data points might become simpler (or

more linear) in the new feature space, allowing the use of linear models

in the new features. This idea is a main driver for the development

of kernel methods [56]. Moreover, the hidden layers of a deep net can

be interpreted as a trainable feature map followed by a linear model

in the form of the output layer. Another reason for learning a feature

map could be that learning a small number of new features helps to

avoid overfitting and ensures interpretability [57]. The special case of a

feature map delivering two numeric features is particularly useful for

data visualization. Indeed, we can depict data points in a scatterplot

by using two features as the coordinates of a data point.

See also: feature, data point, feature space, linear model, kernel method,

deep net, overfitting, interpretability, data, scatterplot.

feature matrix Consider a dataset D with m data points with feature

vectors x(1), . . . ,x(m) ∈ Rd. It is convenient to collect the individual

54



feature vectors into a feature matrix X :=
(
x(1), . . . ,x(m)

)T of size

m× d.

See also: dataset, data point, feature vector, feature.

feature space The feature space of a given ML application or method is

constituted by all potential values that the feature vector of a data point

can take on. A widely used choice for the feature space is the Euclidean

space Rd, with the dimension d being the number of individual features

of a data point.

See also: feature, ML, feature vector, data point, feature, Euclidean

space.

feature vector Feature vector refers to a vector x =
(
x1, . . . , xd

)T whose

entries are individual features x1, . . . , xd. Many ML methods use feature

vectors that belong to some finite-dimensional Euclidean space Rd. For

some ML methods, however, it can be more convenient to work with

feature vectors that belong to an infinite-dimensional vector space (e.g.,

see kernel method).

See also: feature, ML, Euclidean space, kernel method.

FedAvg FedAvg refers to a family of iterative FL algorithms. It uses a

server-client setting and alternates between client-wise local models

re-training, followed by the aggregation of updated model parameters at

the server [58]. The local update at client i = 1, . . . , n at time k starts

from the current model parameters w(k) provided by the server and

typically amounts to executing few iterations of SGD. After completing

the local updates, they are aggregated by the server (e.g., by averaging

55



them). Fig. 11 illustrates the execution of a single iteration of FedAvg.

broadcast local update aggregate

. . .
w(k) w(k)

. . .

w(k,1) w(k,n)

w(k+1)

. . .
w(k,1) w(k,n)

Fig. 11. Illustration of a single iteration of FedAvg which consists of broad-

casting model parameters by the server, local updates at clients, and their

aggregation by the server.

See also: FL, algorithm, local model, model parameters, SGD.

federated learning (FL) FL is an umbrella term for ML methods that

train models in a collaborative fashion using decentralized data and

computation.

See also: ML, model, data.

federated learning network (FL network) An FL network is an undi-

rected weighted graph whose nodes represent data generators that aim

to train a local (or personalized) model. Each node in an FL network

represents some device capable of collecting a local dataset and, in turn,

train a local model. FL methods learn a local hypothesis h(i), for each

node i ∈ V , such that it incurs small loss on the local datasets.

See also: FL, graph, data, model, device, local dataset, local model,

hypothesis, loss.

56



FedGD An FL distributed algorithm that can be implemented as message

passing across an FL network.

See also: FL, distributed algorithm, FL network, gradient step, gradient-

based methods.

FedProx FedProx refers to an iterative FL algorithm that alternates between

separately training local models and combining the updated local model

parameters. In contrast to FedAvg, which uses SGD to train local

models, FedProx uses a proximal operator for the training [59].

See also: FL, algorithm, local model, model parameters, FedAvg, SGD,

proximal operator.

FedRelax An FL distributed algorithm.

See also: FL, distributed algorithm.

FedSGD An FL distributed algorithm that can be implemented as message

passing across an FL network.

See also: FL, distributed algorithm, FL network, gradient step, gradient-

based methods, SGD.

Finnish Meteorological Institute (FMI) The FMI is a government agency

responsible for gathering and reporting weather data in Finland.

See also: data.

flow-based clustering Flow-based clustering groups the nodes of an undi-

rected graph by applying k-means clustering to node-wise feature vectors.

These feature vectors are built from network flows between carefully

selected sources and destination nodes [60].

57



See also: clustering, graph, k-means, feature vector.

function A function is a mathematical rule that assigns to each element

u ∈ U exactly one element v ∈ V [2]. We write this as f : U → V,

where U is the domain and V the co-domain of f . That is, a function

f defines a unique output f(u) ∈ V for every input u ∈ U . For more

details,

Gaussian mixture model (GMM) A GMM is a particular type of proba-

bilistic model for a numeric vector x (e.g., the features of a data point).

Within a GMM, the vector x is drawn from a randomly selected multi-

variate normal distribution p(c) = N
(
µ(c),C(c)

)
with c = I. The index

I ∈ {1, . . . , k} is an RV with probabilities p(I = c) = pc. Note that a

GMM is parametrized by the probability pc, the mean vector µ(c), and

the covariance matrix C(c) for each c = 1, . . . , k. GMMs are widely used

for clustering, density estimation, and as a generative model.

See also: probabilistic model, feature, data point, multivariate normal

distribution, RV, mean, covariance matrix, clustering, model.

Gaussian process (GP) A GP is a collection of RVs {f(x)}x∈X indexed

by input values x from some input space X , such that, for any finite

subset x(1), . . . ,x(m) ∈ X , the corresponding RVs f(x(1), . . . ,x(m) have

a joint multivariate Gaussian distribution:

(
f(x(1), . . . ,x(m)

)
∼ N (µ,K).

For a fixed input space X , a GP is fully specified (or parametrized) by

58



• a mean function µ(x) = E{f(x)}

• and a covariance function K
(
x,x′) = E{

(
f(x) − µ(x)

)(
f(x′) −

µ(x′)
)}

.

Example: We can interpret the temperature distribution across Finland

(at a specific point in time) as the realization of a GP f(x), where

each input x = (lat, lon) denotes a geographic location. Temperature

observations from Finnish Meteorological Institute (FMI) weather sta-

tions provide samples of f(x) at specific locations (see Fig. 12). A GP

allows us to predict the temperature nearby FMI weather stations and

to quantify the uncertainty of these predictions.

lon

lat

Fig. 12. We can interpret the temperature distribution over Finland as a

realization of a GP indexed by geographic coordinates and sampled at FMI

weather stations (indicated by blue dots).

See also: RV, mean, realization, FMI, sample, uncertainty.

Gaussian random variable (Gaussian RV) A standard Gaussian RV is

59



a real-valued RV x with probability density function (pdf) [7], [17], [61]

p(x) =
1√
2π

exp−x2/2 .

Given a standard Gaussian RV x, we can construct a general Gaussian

RV x′ with mean µ and variance σ2 via x′ := σx+ µ. The probability

distribution of a Gaussian RV is referred to as normal distribution,

denoted N (µ, σ2).

A Gaussian random vector x ∈ Rd with covariance matrix C and mean

µ can be constructed as [17], [61], [62]

x := Az+ µ,

where z :=
(
z1, . . . , zd

)T is a vector of i.i.d. standard Gaussian RVs,

and A ∈ Rd×d is any matrix satisfying AAT = C. The probability dis-

tribution of a Gaussian random vector is referred to as the multivariate

normal distribution, denoted N (µ,C).

Gaussian random vectors arise as finite-dimensional marginals of GPs,

which define consistent joint Gaussian distributions over arbitrary (po-

tentially infinite) index sets [63].

Gaussian RVs are widely used probabilistic models in the statistical

analysis of ML methods. Their significance arises partly from the central

limit theorem (CLT), which is a mathematically precise formulation

of the following rule-of-thumb: the average of a large number of inde-

pendent RVs (not necessarily Gaussian themselves) tends towards a

Gaussian RV [64].

Compared to other probability distributions, the multivariate nor-

mal distribution is also distinct in that—in a mathematically precise

60



sense—represents maximum uncertainty. Among all continuous random

vectors with a given covariance matrix C, the Gaussian random vector

x ∼ N (µ,C) maximizes differential entropy [28, Th. 8.6.5]. This makes

Gaussian distributions a natural choice for capturing uncertainty (or

lack of knowledge) in the absence of additional structural information.

See also: RV, pdf, mean, variance, probability distribution, covariance

matrix, i.i.d., multivariate normal distribution, GP, probabilistic model,

ML, CLT.

general data protection regulation (GDPR) The GDPR was enacted

by the European Union (EU), effective from May 25, 2018 [26]. It

safeguards the privacy and data rights of individuals in the EU. The

GDPR has significant implications for how data is collected, stored, and

used in ML applications. Key provisions include the following:

• Data minimization principle: ML systems should only use the

necessary amount of personal data for their purpose.

• Transparency and explainability: ML systems should enable their

users to understand how the systems make decisions that impact

the users.

• Data subject rights: Users should get an opportunity to access,

rectify, and delete their personal data, as well as to object to

automated decision-making and profiling.

• Accountability: Organizations must ensure robust data security

and demonstrate compliance through documentation and regular

audits.

61



See also: data, ML, data minimization principle, transparency, explain-

ability.

generalization Generalization refers to the ability of a model trained on a

training set to make accurate predictions on new, unseen data points.

This is a central goal of ML and AI, i.e., to learn patterns that extend

beyond the training set. Most ML systems use ERM to learn a hy-

pothesis ĥ ∈ H by minimizing the average loss over a training set of

data points z(1), . . . , z(m), which is denoted D(train). However, success

on the training set does not guarantee success on unseen data—this

discrepancy is the challenge of generalization.

To study generalization mathematically, we need to formalize the notion

of “unseen” data. A widely used approach is to assume a probabilistic

model for data generation, such as the i.i.d. assumption. Here, we

interpret data points as independent RVs with an identical probability

distribution p(z). This probability distribution, which is assumed fixed

but unknown, allows us to define the risk of a trained model ĥ as the

expected loss

L̄
(
ĥ
)
= Ez∼p(z)

{
L(ĥ, z)

}
.

The difference between risk L̄
(
ĥ
)

and empirical risk L̂
(
ĥ|D(train)

)
is

known as the generalization gap. Tools from probability theory, such as

concentration inequalities and uniform convergence, allow us to bound

this gap under certain conditions [65].

Generalization without probability: Probability theory is one way to

study how well a model generalizes beyond the training set, but it is not

the only way. Another option is to use simple, deterministic changes to

62



the data points in the training set. The basic idea is that a good model

ĥ should be robust, i.e., its prediction ĥ(x) should not change much if

we slightly change the features x of a data point z.

For example, an object detector trained on smartphone photos should

still detect the object if a few random pixels are masked [66]. Similarly,

it should deliver the same result if we rotate the object in the image [67].

p(z)
z(1)

z(2)

ĥ

Fig. 13. Two data points z(1), z(2) that are used as a training set to learn

a hypothesis ĥ via ERM. We can evaluate ĥ outside D(train) either by an

i.i.d. assumption with some underlying probability distribution p(z) or by

perturbing the data points.

See also: model, training set, prediction, data point, ML, AI, ERM,

hypothesis, loss, data, probabilistic model, i.i.d. assumption, RV, prob-

ability distribution, risk, empirical risk, generalization gap, probability,

concentration inequality, feature.

generalization gap The difference between the performance of a trained

model on the training set and its performance on other data points

(such as those in a validation set).

63



See also: model, training set, data point, validation set, hypothesis,

decision tree, generalization, gradient-based methods, ERM, smooth,

loss function, GD, model parameters, empirical risk, gradient, loss,

gradient step.

generalized total variation (GTV) GTV is a measure of the variation of

trained local models h(i) (or their model parameters w(i)) assigned to

the nodes i = 1, . . . , n of an undirected weighted graph G with edges E .

Given a measure d(h,h
′) for the discrepancy between hypothesis maps

h, h′, the GTV is ∑
{i,i′}∈E

Ai,i′d
(h(i),h(i′)).

Here, Ai,i′ > 0 denotes the weight of the undirected edge {i, i′} ∈ E .

See also: local model, model parameters, graph, discrepancy, hypothesis.

generalized total variation minimization (GTVMin) GTVMin is an

instance of regularized empirical risk minimization (RERM) using the

GTV of local model parameters as a regularizer [68].

See also: RERM, GTV, model parameters, regularizer.

geometric median (GM) The GM of a set of input vectors x(1), . . . ,x(m)

in Rd is a point z ∈ Rd that minimizes the sum of distances to the

vectors [22] such that

z ∈ argmin
y∈Rd

m∑
r=1

∥∥y − x(r)
∥∥
2
. (2)

Fig. 14 illustrates a fundamental property of the GM: If z does not

coincide with any of the input vectors, then the unit vectors pointing

64



from z to each x(r) must sum to zero—this is the zero-subgradient

(optimality) condition of (2). It turns out that the solution to (2)

cannot be arbitrarily pulled away from trustworthy input vectors as

long as they are the majority [69, Th. 2.2].

z

x(1)

x(2)

clean

x(2)−z

∥x(2)−z∥
2

perturbed

x(3)

Fig. 14. Consider a solution z of (2) that does not coincide with any of the

input vectors. The optimality condition for (2) requires that the unit vectors

from z to the input vectors sum to zero.

See also: subgradient.

gradient For a real-valued function f : Rd → R : w 7→ f(w), if a vector g

exists such that limw→w′
f(w)−

(
f(w′)+gT (w−w′)

)
∥w−w′∥ = 0, it is referred to as

the gradient of f at w′. If it exists, the gradient is unique and denoted

∇f(w′) or ∇f(w)
∣∣
w′ [2].

gradient descent (GD) GD is an iterative method for finding the minimum

of a differentiable function f(w) of a vector-valued argument w ∈ Rd.

Consider a current guess or approximation w(k) for the minimum of

the function f(w). We would like to find a new (better) vector w(k+1)

that has a smaller objective value f(w(k+1)) < f
(
w(k)

)
than the current

65



guess w(k). We can achieve this typically by using a gradient step

w(k+1) = w(k) − η∇f(w(k)) (3)

with a sufficiently small step size η>0. Fig. 15 illustrates the effect of

a single GD step (3).

∇f(w(k))

−η∇f(w(k))

1

w

f(w)

w w(k)w(k+1)

1

2

3

4

Fig. 15. A single gradient step (3) towards the minimizer w of f(w).

See also: minimum, differentiable, gradient step, step size, gradient.

gradient step Given a differentiable real-valued function f(·) : Rd → R and

a vector w ∈ Rd, the gradient step updates w by adding the scaled

negative gradient ∇f(w) to obtain the new vector (see Fig. 16)

ŵ := w − η∇f(w). (4)

Mathematically, the gradient step is a (typically non-linear) operator

T (f,η) that is parametrized by the function f and the step size η.

66



∇f(w(k))

−η∇f(w(k))

1

f(·)

w wT (f,η)(w)

Fig. 16. The basic gradient step (4) maps a given vector w to the updated

vector w′. It defines an operator T (f,η)(·) : Rd → Rd : w 7→ ŵ.

Note that the gradient step (4) optimizes locally - in a neighborhood

whose size is determined by the step size η - a linear approximation to

the function f(·). A natural generalization of (4) is to locally optimize

the function itself - instead of its linear approximation - such that

ŵ = argmin
w′∈Rd

f(w′)+(1/η) ∥w −w′∥22 . (5)

We intentionally use the same symbol η for the parameter in (5) as we

used for the step size in (4). The larger the η we choose in (5), the

more progress the update will make towards reducing the function value

f(ŵ). Note that, much like the gradient step (4), also the update (5)

defines a (typically non-linear) operator that is parametrized by the

function f(·) and the parameter η. For a convex function f(·), this

operator is known as the proximal operator of f(·) [70].

See also: differentiable, gradient, step size, neighborhood, generalization,

convex, proximal operator.

67



gradient-based methods Gradient-based methods are iterative techniques

for finding the minimum (or maximum) of a differentiable objective

function of the model parameters. These methods construct a sequence

of approximations to an optimal choice for model parameters that re-

sults in a minimum (or maximum) value of the objective function. As

their name indicates, gradient-based methods use the gradients of the

objective function evaluated during previous iterations to construct new,

(hopefully) improved model parameters. One important example of a

gradient-based method is GD.

See also: gradient, minimum, maximum, differentiable, objective func-

tion, model parameters, GD.

graph A graph G = (V , E) is a pair that consists of a node set V and an

edge set E . In its most general form, a graph is specified by a map that

assigns each edge e ∈ E a pair of nodes [71]. One important family

of graphs is simple undirected graphs. A simple undirected graph is

obtained by identifying each edge e ∈ E with two different nodes {i, i′}.

Weighted graphs also specify numeric weights Ae for each edge e ∈ E .

See also: weights.

graph clustering Graph clustering aims at clustering data points that are

represented as the nodes of a graph G. The edges of G represent pairwise

similarities between data points. Sometimes we can quantify the extent

of these similarities by an edge weight [60], [72].

See also: graph, clustering, data point, edge weight.

hard clustering Hard clustering refers to the task of partitioning a given set

68



of data points into (a few) non-overlapping clusters. The most widely

used hard clustering method is k-means.

See also: clustering, data point, cluster, k-means.

high-dimensional regime The high-dimensional regime of ERM is charac-

terized by the effective dimension of the model being larger than the

sample size, i.e., the number of (labeled) data points in the training set.

For example, linear regression methods operate in the high-dimensional

regime whenever the number d of features used to characterize data

points exceeds the number of data points in the training set. Another

example of ML methods that operate in the high-dimensional regime is

large ANNs, which have far more tunable weights (and bias terms) than

the total number of data points in the training set. High-dimensional

statistics is a recent main thread of probability theory that studies the

behavior of ML methods in the high-dimensional regime [21], [73].

See also: ERM, effective dimension, model, sample size, data point,

training set, linear regression, feature, ML, ANN, weights, probability.

Hilbert space A Hilbert space is a complete inner product space [74]. That

is, it is a vector space equipped with an inner product between pairs

of vectors, and it satisfies the additional requirement of completeness,

i.e., every Cauchy sequence of vectors converges to a limit within the

space. A canonical example of a Hilbert space is the Euclidean space

Rd, for some dimension d, consisting of vectors u =
(
u1, . . . , ud

)T and

the standard inner product uTv.

See also: Euclidean space.

69



hinge loss Consider a data point characterized by a feature vector x ∈ Rd

and a binary label y ∈ {−1, 1}. The hinge loss incurred by a real-valued

hypothesis map h(x) is defined as

L ((x, y), h) := max{0, 1− yh(x)}. (6)

−3 −2 −1 1 2 3

1

2

yh(x)

L ((x, y), h)

Fig. 17. A regularized variant of the hinge loss is used by the support vector

machine (SVM) [75].

See also: data point, feature vector, label, loss, hypothesis, SVM.

histogram Consider a dataset D that consists of m data points z(1), . . . , z(m),

each of them belonging to some cell [−U,U ]× . . .× [−U,U ] ⊆ Rd with

side length U . We partition this cell evenly into smaller elementary cells

with side length ∆. The histogram of D assigns each elementary cell

to the corresponding fraction of data points in D that fall into this ele-

mentary cell. A visual example of such a histogram is provided in Fig. 18.

70



[0,1) [1,2) [2,3) [3,4) [4,5)

1

2

3

4

5

6

Value

Fr
eq

ue
nc

y

Histogram of Sample Data

Fig. 18. A histogram representing the frequency of data points falling within

discrete value ranges (i.e., bins). Each bar height shows the count of samples

in the corresponding interval.

See also: dataset, data point, sample.

horizontal federated learning (HFL) HFL uses local datasets constituted

by different data points but uses the same features to characterize

them [76]. For example, weather forecasting uses a network of spa-

tially distributed weather (observation) stations. Each weather station

measures the same quantities, such as daily temperature, air pressure,

and precipitation. However, different weather stations measure the

characteristics or features of different spatiotemporal regions. Each

spatiotemporal region represents an individual data point, each charac-

terized by the same features (e.g., daily temperature or air pressure).

See also: local dataset, data point, feature, FL, vertical federated

71



learning (VFL), clustered federated learning (CFL).

Huber loss The Huber loss unifies the squared error loss and the absolute

error loss.

See also: loss, squared error loss, absolute error loss.

Huber regression Huber regression refers to ERM-based methods that use

the Huber loss as a measure of the prediction error. Two important

special cases of Huber regression are least absolute deviation regression

and linear regression. Tuning the threshold parameter of the Huber loss

allows the user to trade the robustness of the absolute error loss against

the computational benefits of the smooth squared error loss.

See also: regression, ERM, Huber loss, prediction, regression, least

absolute deviation regression, linear regression, absolute error loss,

smooth, squared error loss.

hypothesis A hypothesis refers to a map (or function) h : X → Y from the

feature space X to the label space Y . Given a data point with features

x, we use a hypothesis map h to estimate (or approximate) the label

y using the prediction ŷ = h(x). ML is all about learning (or finding)

a hypothesis map h such that y ≈ h(x) for any data point (having

features x and label y).

See also: feature space, label space, data point, feature, label, prediction,

ML.

hypothesis space Every practical ML method uses a hypothesis space (or

model) H. The hypothesis space of an ML method is a subset of all pos-

sible maps from the feature space to the label space. The design choice

72



of the hypothesis space should take into account available computational

resources and statistical aspects. If the computational infrastructure

allows for efficient matrix operations, and there is an (approximately)

linear relation between a set of features and a label, a useful choice for

the hypothesis space might be the linear model.

See also: ML, hypothesis, model, feature space, label space, statistical

aspects, feature, label, linear model.

independent and identically distributed (i.i.d.) It can be useful to in-

terpret data points z(1), . . . , z(m) as realizations of i.i.d. RVs with a

common probability distribution. If these RVs are continuous-valued,

their joint pdf is p
(
z(1), . . . , z(m)

)
=

∏m
r=1 p

(
z(r)

)
, with p(z) being the

common marginal pdf of the underlying RVs.

See also: data point, realization, RV, probability distribution, pdf.

independent and identically distributed assumption (i.i.d. assumption)

The i.i.d. assumption interprets data points of a dataset as the realiza-

tions of i.i.d. RVs.

See also: i.i.d., data point, dataset, realization, RV.

interpretability An ML method is interpretable for a specific user if they

can well anticipate the predictions delivered by the method. The notion

of interpretability can be made precise using quantitative measures of

the uncertainty about the predictions [48].

See also: ML, prediction, uncertainty.

73



kernel Consider data points characterized by a feature vector x ∈ X with a

generic feature space X . A (real-valued) kernel K : X ×X → R assigns

each pair of feature vectors x,x′ ∈ X a real number K
(
x,x′). The value

K
(
x,x′) is often interpreted as a measure for the similarity between x

and x′. Kernel methods use a kernel to transform the feature vector x

to a new feature vector z = K
(
x, ·

)
. This new feature vector belongs to

a linear feature space X ′ which is (in general) different from the original

feature space X . The feature space X ′ has a specific mathematical

structure, i.e., it is a reproducing kernel Hilbert space [56], [75].

See also: data point, feature vector, feature space, kernel method,

Hilbert space.

kernel method A kernel method is an ML method that uses a kernel K

to map the original (i.e., raw) feature vector x of a data point to a

new (transformed) feature vector z = K
(
x, ·

)
[56], [75]. The motivation

for transforming the feature vectors is that, by using a suitable kernel,

the data points have a "more pleasant" geometry in the transformed

feature space. For example, in a binary classification problem, using

transformed feature vectors z might allow us to use linear models, even

if the data points are not linearly separable in the original feature space

(see Fig. 19).

74



x(5)

x(4)

x(3)
x(2)

x(1)

z(5)z(4)z(3)z(2)

z(1)
z = K

(
x, ·

)

Fig. 19. Five data points characterized by feature vectors x(r) and labels

y(r) ∈ {◦,□}, for r = 1, . . . , 5. With these feature vectors, there is no

way to separate the two classes by a straight line (representing the decision

boundary of a linear classifier). In contrast, the transformed feature vectors

z(r) = K
(
x(r), ·

)
allow us to separate the data points using a linear classifier.

See also: kernel, ML, feature vector, data point, feature space, classifi-

cation, linear model, label, decision boundary, linear classifier.

Kullback-Leibler divergence (KL divergence) The KL divergence is a

quantitative measure of how much one probability distribution is differ-

ent from another probability distribution [28].

See also: probability distribution.

label A higher-level fact or quantity of interest associated with a data point.

For example, if the data point is an image, the label could indicate

whether the image contains a cat or not. Synonyms for label, commonly

used in specific domains, include "response variable," "output variable,"

and "target" [53], [54], [55].

See also: data point.

75



label space Consider an ML application that involves data points charac-

terized by features and labels. The label space is constituted by all

potential values that the label of a data point can take on. Regres-

sion methods, aiming at predicting numeric labels, often use the label

space Y = R. Binary classification methods use a label space that

consists of two different elements, e.g., Y = {−1, 1}, Y = {0, 1}, or

Y = {“cat image” , “no cat image”}.

See also: ML, data point, feature, label, regression, classification.

labeled datapoint A data point whose label is known or has been deter-

mined by some means which might require human labor.

See also: data point, label.

Laplacian matrix The structure of a graph G, with nodes i = 1, . . . , n, can

be analyzed using the properties of special matrices that are associated

with G. One such matrix is the graph Laplacian matrix L(G) ∈ Rn×n,

which is defined for an undirected and weighted graph [72], [77]. It is

defined element-wise as (see Fig. 20)

L
(G)
i,i′ :=


−Ai,i′ for i ̸= i′, {i, i′}∈E ,∑

i′′ ̸=iAi,i′′ for i = i′,

0 else.

(7)

Here, Ai,i′ denotes the edge weight of an edge {i, i′} ∈ E .

76



1

2 3

L(G) =


2 −1 −1

−1 1 0

−1 0 1


Fig. 20. Left: Some undirected graph G with three nodes i = 1, 2, 3. Right:

The Laplacian matrix L(G) ∈ R3×3 of G.

See also: graph, edge weight.

large language model (LLM) LLMs is an umbrella term for ML methods

that process and generate human-like text. These methods typically use

deep nets with billions (or even trillions) of parameters. A widely used

choice for the network architecture is referred to as Transformers [78].

The training of LLMs is often based on the task of predicting a few

words that are intentionally removed from a large text corpus. Thus,

we can construct labeled datapoints simply by selecting some words

of a text as labels and the remaining words as features of data points.

This construction requires very little human supervision and allows for

generating sufficiently large training sets for LLMs.

See also: ML, deep net, parameters, labeled datapoint, label, feature,

data point, training set, model.

law of large numbers The law of large numbers refers to the convergence

of the average of an increasing (large) number of i.i.d. RVs to the

mean of their common probability distribution. Different instances of

the law of large numbers are obtained by using different notions of

77



convergence [61].

See also: i.i.d., RV, mean, probability distribution.

learning rate Consider an iterative ML method for finding or learning a

useful hypothesis h ∈ H. Such an iterative method repeats similar

computational (update) steps that adjust or modify the current hy-

pothesis to obtain an improved hypothesis. One well-known example

of such an iterative learning method is GD and its variants, SGD and

projected gradient descent (projected GD). A key parameter of an

iterative method is the learning rate. The learning rate controls the

extent to which the current hypothesis can be modified during a single

iteration. A well-known example of such a parameter is the step size

used in GD [8, Ch. 5].

See also: ML, hypothesis, GD, SGD, projected GD, step size.

learning task Consider a dataset D constituted by several data points, each

of them characterized by features x. For example, the dataset D might

be constituted by the images of a particular database. Sometimes it

might be useful to represent a dataset D, along with the choice of

features, by a probability distribution p(x). A learning task associated

with D consists of a specific choice for the label of a data point and

the corresponding label space. Given a choice for the loss function and

model, a learning task gives rise to an instance of ERM. Thus, we could

define a learning task also via an instance of ERM, i.e., via an objective

function. Note that, for the same dataset, we obtain different learning

tasks by using different choices for the features and label of a data point.

78



These learning tasks are related, as they are based on the same dataset,

and solving them jointly (via multitask learning methods) is typically

preferable over solving them separately [79], [80], [81].

See also: dataset, data point, feature, probability distribution, label,

label space, loss function, model, ERM, objective function, multitask

learning.

least absolute deviation regression Least absolute deviation regression

is an instance of ERM using the absolute error loss. It is a special case

of Huber regression.

See also: ERM, absolute error loss, Huber regression.

least absolute shrinkage and selection operator (Lasso) The Lasso is

an instance of SRM. It learns the weights w of a linear map h(x) = wTx

based on a training set. Lasso is obtained from linear regression by

adding the scaled ℓ1-norm α ∥w∥1 to the average squared error loss

incurred on the training set.

See also: SRM, weights, training set, linear regression, norm, squared

error loss.

linear classifier Consider data points characterized by numeric features

x ∈ Rd and a label y ∈ Y from some finite label space Y. A linear

classifier is characterized by having decision regions that are separated

by hyperplanes in Rd [8, Ch. 2].

See also: data point, feature, label, label space, classifier, decision

region.

linear model Consider data points, each characterized by a numeric feature

79



vector x ∈ Rd. A linear model is a hypothesis space which consists of

all linear maps such that

H(d) :=
{
h(x) = wTx : w ∈ Rd

}
. (8)

Note that (8) defines an entire family of hypothesis spaces, which is

parametrized by the number d of features that are linearly combined to

form the prediction h(x). The design choice of d is guided by compu-

tational aspects (e.g., reducing d means less computation), statistical

aspects (e.g., increasing d might reduce prediction error), and inter-

pretability. A linear model using few carefully chosen features tends to

be considered more interpretable [50], [57].

See also: data point, feature vector, model, hypothesis space, feature,

prediction, computational aspects, statistical aspects, interpretability.

linear regression Linear regression aims to learn a linear hypothesis map

to predict a numeric label based on the numeric features of a data point.

The quality of a linear hypothesis map is measured using the average

squared error loss incurred on a set of labeled datapoints, which we

refer to as the training set.

See also: regression, hypothesis, label, feature, data point, squared error

loss, labeled datapoint, training set.

local dataset The concept of a local dataset is in between the concept of a

data point and a dataset. A local dataset consists of several individual

data points, which are characterized by features and labels. In contrast

to a single dataset used in basic ML methods, a local dataset is also

related to other local datasets via different notions of similarity. These

80



similarities might arise from probabilistic models or communication

infrastructure and are encoded in the edges of an FL network.

See also: dataset, data point, feature, label, ML, probabilistic model,

FL network.

local interpretable model-agnostic explanations (LIME) Consider a

trained model (or learned hypothesis) ĥ ∈ H, which maps the feature

vector of a data point to the prediction ŷ = ĥ. LIME is a technique

for explaining the behavior of ĥ, locally around a data point with

feature vector x(0) [57]. The explanation is given in the form of a local

approximation g ∈ H′ of ĥ (see Fig. 21). This approximation can be

obtained by an instance of ERM with a carefully designed training set.

In particular, the training set consists of data points with feature vector

x close to x(0) and the (pseudo-)label ĥ(x). Note that we can use a

different model H′ for the approximation from the original model H.

For example, we can use a decision tree to approximate (locally) a deep

net. Another widely-used choice for H′ is the linear model.

81



ĥ(x)

g(x)

x(0)

x

y

Fig. 21. To explain a trained model ĥ ∈ H, around a given feature vector

x(0), we can use a local approximation g ∈ H′.

See also: model, hypothesis, feature vector, data point, prediction,

explanation, ERM, training set, label, decision tree, deep net, linear

model.

local model Consider a collection of devices that are represented as nodes

V of an FL network. A local model H(i) is a hypothesis space assigned

to a node i ∈ V . Different nodes might be assigned different hypothesis

spaces, i.e., in general H(i) ̸= H(i′) for different nodes i, i′ ∈ V .

See also: device, FL network, model, hypothesis space.

logistic loss Consider a data point characterized by the features x and a

binary label y ∈ {−1, 1}. We use a real-valued hypothesis h to predict

the label y from the features x. The logistic loss incurred by this

prediction is defined as

L ((x, y), h) := log(1 + exp(−yh(x))). (9)

82



Carefully note that the expression (9) for the logistic loss applies only

for the label space Y = {−1, 1} and when using the thresholding rule

(1).

See also: data point, feature, label, hypothesis, loss, prediction, label

space.

logistic regression Logistic regression learns a linear hypothesis map (or

classifier) h(x) = wTx to predict a binary label y based on the numeric

feature vector x of a data point. The quality of a linear hypothesis map

is measured by the average logistic loss on some labeled datapoints (i.e.,

the training set).

See also: regression, hypothesis, classifier, label, feature vector, data

point, logistic loss, labeled datapoint, training set.

loss ML methods use a loss function L (z, h) to measure the error incurred

by applying a specific hypothesis to a specific data point. With a slight

abuse of notation, we use the term loss for both the loss function L

itself and the specific value L (z, h), for a data point z and hypothesis

h.

See also: ML, loss function, hypothesis, data point.

loss function A loss function is a map

L : X × Y ×H → R+ :
((
x, y

)
, h

)
7→ L ((x, y), h) .

It assigns a non-negative real number (i.e., the loss) L ((x, y), h) to a

pair that consists of a data point, with features x and label y, and a

hypothesis h ∈ H. The value L ((x, y), h) quantifies the discrepancy

83



between the true label y and the prediction h(x). Lower (closer to zero)

values L ((x, y), h) indicate a smaller discrepancy between prediction

h(x) and label y. Fig. 22 depicts a loss function for a given data point,

with features x and label y, as a function of the hypothesis h ∈ H.

L ((x, y), h)

hypothesis h

loss

Fig. 22. Some loss function L ((x, y), h) for a fixed data point, with feature

vector x and label y, and a varying hypothesis h. ML methods try to find (or

learn) a hypothesis that incurs minimal loss.

See also: loss, data point, feature, label, hypothesis, prediction, feature

vector, ML.

machine learning (ML) ML aims to predict a label from the features

of a data point. ML methods achieve this by learning a hypothesis

from a hypothesis space (or model) through the minimization of a loss

function [8], [82]. One precise formulation of this principle is ERM.

Different ML methods are obtained from different design choices for

data points (i.e., their features and label), the model, and the loss

function [8, Ch. 3].

84



See also: label, feature, data point, hypothesis, hypothesis space, model,

loss function, ERM.

map We use the term map as a synonym for a function.

maximum The maximum of a set A ⊆ R of real numbers is the greatest

element in that set, if such an element exists. A set A has a maximum if

it is bounded above and attains its supremum (or least upper bound) [2,

Sec. 1.4].

See also: supremum.

maximum likelihood Consider data points D =
{
z(1), . . . , z(m)} that are

interpreted as the realizations of i.i.d. RVs with a common probability

distribution p(z;w) which depends on the model parameters w ∈

W ⊆ Rn. Maximum likelihood methods learn model parameters w by

maximizing the probability (density) p(D;w) =
∏m

r=1 p(z
(r);w) of the

observed dataset. Thus, the maximum likelihood estimator is a solution

to the optimization problem maxw∈W p(D;w).

See also: data point, realization, i.i.d., RV, probability distribution,

model parameters, maximum, dataset.

mean The mean of an RV x, taking values in an Euclidean space Rd, is

its expectation E{x}. It is defined as the Lebesgue integral of x with

respect to the underlying probability distribution P (e.g., see [2] or [6]),

i.e.,

E{x} =

∫
Rd

x dP (x).

We also use the term to refer to the average of a finite sequence

x(1), . . . ,x(m) ∈ Rd. However, these two definitions are essentially the

85



same. Indeed, we can use the sequence x(1), . . . ,x(m) ∈ Rd to construct

a discrete RV x̃ = x(I), with the index I being chosen uniformly at

random from the set {1, . . . ,m}. The mean of x̃ is precisely the average
1
m

∑m
r=1 x

(r).

See also: RV, Euclidean space, expectation, probability distribution.

mean squared estimation error (MSEE) Consider an ML method that

learns model parameters ŵ based on some dataset D. If we interpret

the data points in D as i.i.d. realizations of an RV z, we define the

estimation error ∆w := ŵ − w. Here, w denotes the true model

parameters of the probability distribution of z. The MSEE is defined

as the expectation E
{∥∥∆w

∥∥2} of the squared Euclidean norm of the

estimation error [15], [40].

See also: ML, model parameters, dataset, data point, i.i.d., realization,

RV, estimation error, probability distribution, expectation, norm, mean.

metric In its most general form, a metric is a quantitative measure used

to compare or evaluate objects. In mathematics, a metric measures

the distance between two points and must follow specific rules, i.e., the

distance is always non-negative, zero only if the points are the same,

symmetric, and it satisfies the triangle inequality [2]. In ML, a metric is

a quantitative measure of how well a model performs. Examples include

accuracy, precision, and the average 0/1 loss on a test set [36], [42]. A

loss function is used to train models, while a metric is used to compare

trained models.

See also: ML, model, accuracy, 0/1 loss, test set, loss function, loss,

86



model selection.

minimum Given a set of real numbers, the minimum is the smallest of those

numbers.

missing data Consider a dataset constituted by data points collected via

some physical device. Due to imperfections and failures, some of the

feature or label values of data points might be corrupted or simply

missing. Data imputation aims at estimating these missing values [83].

We can interpret data imputation as an ML problem where the label of

a data point is the value of the corrupted feature.

See also: dataset, data point, device, feature, label, data, ML.

model In the context of ML, the term model typically refers to the hypothesis

space underlying an ML method [8], [65]. However, the term is also used

in other fields but with a different meaning. For example, a probabilistic

model refers to a parametrized set of probability distributions.

See also: ML, hypothesis space, probabilistic model, probability distri-

bution.

model inversion TBD.

model parameters Model parameters are quantities that are used to select

a specific hypothesis map from a model. We can think of a list of model

parameters as a unique identifier for a hypothesis map, similar to how

a social security number identifies a person in Finland.

See also: model, parameters, hypothesis.

87



model selection In ML, model selection refers to the process of choosing

between different candidate models. In its most basic form, model

selection amounts to: 1) training each candidate model; 2) computing

the validation error for each trained model; and 3) choosing the model

with the smallest validation error [8, Ch. 6].

See also: ML, model, validation error.

multi-armed bandit (MAB) A MAB problem models a repeated decision-

making scenario in which, at each time step k, a learner must choose one

out of several possible actions, often referred to as arms, from a finite

set A. Each arm a ∈ A yields a stochastic reward r(a) drawn from an

unknown probability distribution with mean µ(a). The learner’s goal is

to maximize the cumulative reward over time by strategically balancing

exploration (i.e., gathering information about uncertain arms) and

exploitation (i.e., selecting arms known to perform well). This balance

is quantified by the notion of regret, which measures the performance

gap between the learner’s strategy and the optimal strategy that always

selects the best arm. MAB problems form a foundational model in

online learning, reinforcement learning, and sequential experimental

design [84].

See also: reward, probability distribution, mean, regret, model.

multi-label classification Multi-label classification problems and methods

use data points that are characterized by several labels. As an example,

consider a data point representing a picture with two labels. One label

indicates the presence of a human in this picture and another label

88



indicates the presence of a car.

See also: label, classification, data point.

multitask learning Multitask learning aims at leveraging relations between

different learning tasks. Consider two learning tasks obtained from the

same dataset of webcam snapshots. The first task is to predict the

presence of a human, while the second task is to predict the presence of

a car. It might be useful to use the same deep net structure for both

tasks and only allow the weights of the final output layer to be different.

See also: learning task, dataset, deep net, weights.

multivariate normal distribution The multivariate normal distribution,

which is denoted N (µ,Σ), is a fundamental probabilistic model for

numerical feature vectors of fixed dimension d. It defines a family of

probability distributions over vector-valued RVs x ∈ Rd [7], [17], [62].

Each distribution in this family is fully specified by its mean vector

µ ∈ Rd and covariance matrix Σ ∈ Rd×d. When the covariance matrix

Σ is invertible, its probability distribution is fully characterized by the

following pdf:

p(x) =
1√

(2π)ddet (Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Note that the pdf is only defined when Σ is invertible. More generally,

any RV x ∼ N (µ,Σ) admits the following innovation representation:

x=Az+µ,

where z ∼ N (0, I) is a standard normal vector and A ∈ Rd×d satisfies

AAT = Σ. This innovation representation is valid even when the

89



covariance matrix Σ is singular, in which case A is not necessarily

full-rank [85, Ch. 23].

The family of multivariate normal distributions is exceptional among

probabilistic models for numerical quantities at least for the following

reasons. First, the family is closed under affine transformations, i.e.,

x ∼ N (µ,Σ) implies Bx+c ∼ N
(
Bµ+ c,BΣBT

)
.

Second, the probability distribution N (0,Σ) maximizes the differential

entropy among all distributions with the same covariance matrix Σ [28].

See also: probabilistic model, feature vector, probability distribution,

RV, covariance matrix, pdf, standard normal vector, Gaussian RV,

mean.

mutual information (MI) The MI I (x; y) between two RVs x, y defined

on the same probability space is given by [28]

I (x; y) := E
{
log

p(x, y)

p(x)p(y)

}
.

It is a measure of how well we can estimate y based solely on x. A

large value of I (x; y) indicates that y can be well predicted solely from

x. This prediction could be obtained by a hypothesis learned by an

ERM-based ML method.

See also: RV, probability space, prediction, hypothesis, ERM, ML.

nearest neighbor (NN) NN methods learn a hypothesis h : X → Y whose

function value h(x) is solely determined by the NNs within a given

dataset. Different methods use different metrics for determining the

90



NNs. If data points are characterized by numeric feature vectors, we

can use their Euclidean distances as the metric.

See also: hypothesis, dataset, data point, feature vector, neighbors.

neighborhood The neighborhood of a node i ∈ V is the subset of nodes

constituted by the neighbors of i.

See also: neighbors.

neighbors The neighbors of a node i ∈ V within an FL network are those

nodes i′ ∈ V \ {i} that are connected (via an edge) to node i.

See also: FL network.

networked data Networked data consists of local datasets that are related

by some notion of pairwise similarity. We can represent networked

data using a graph whose nodes carry local datasets and edges encode

pairwise similarities. One example of networked data arises in FL

applications where local datasets are generated by spatially distributed

devices.

See also: data, local dataset, graph, FL, device.

networked exponential families (nExpFam) A collection of exponen-

tial families, each of them assigned to a node of an FL network. The

model parameters are coupled via the network structure by requiring

them to have a small GTV [86].

See also: FL network, model parameters, GTV.

networked federated learning (NFL) NFL refers to methods that learn

personalized models in a distributed fashion. These methods learn from

91



local datasets that are related by an intrinsic network structure.

See also: model, local dataset, FL.

networked model A networked model over an FL network G = (V , E)

assigns a local model (i.e., a hypothesis space) to each node i ∈ V of

the FL network G.

See also: model, FL network, local model, hypothesis space.

node degree The degree d(i) of a node i ∈ V in an undirected graph is the

number of its neighbors, i.e., d(i) :=
∣∣N (i)

∣∣.
See also: graph, neighbors.

non-smooth We refer to a function as non-smooth if it is not smooth [87].

See also: smooth.

norm A norm is a function that maps each (vector) element of a vector space

to a non-negative real number. This function must be homogeneous

and definite, and it must satisfy the triangle inequality [88].

objective function An objective function is a map that assigns a numeric

objective value f(w) to each choice w of some variable that we want to

optimize (see Fig. 23). In the context of ML, the optimization variable

could be the model parameters of a hypothesis h(w). Common objective

functions include the risk (i.e., expected loss) or the empirical risk

(i.e., average loss over a training set). ML methods apply optimization

techniques, such as gradient-based methods, to find the choice w with

the optimal value (e.g., the minimum or the maximum) of the objective

92



function.

w

f(w)

Fig. 23. An objective function maps each possible value w of an optimization

variable, such as the model parameters of an ML model, to a value that

measures the usefulness of w.

See also: ML, model parameters, hypothesis, risk, loss, empirical risk,

training set, gradient-based methods, minimum, maximum, model, loss

function.

online algorithm An online algorithm processes input data incrementally,

receiving data points sequentially and making decisions or producing

outputs (or decisions) immediately without having access to the entire

input in advance [44], [45]. Unlike an offline algorithm, which has

the entire input available from the start, an online algorithm must

handle uncertainty about future inputs and cannot revise past decisions.

Similar to an offline algorithm, we also represent an online algorithm

formally as a collection of possible executions. However, the execution

93



sequence for an online algorithm has a distinct structure:

in1, s1, out1, in2, s2, out2, . . . , inT , sT , outT .

Each execution begins from an initial state (i.e., in1) and proceeds

through alternating computational steps, outputs (or decisions), and

inputs. Specifically, at step k, the algorithm performs a computational

step sk, generates an output outk, and then subsequently receives the

next input (data point) ink+1. A notable example of an online algorithm

in ML is online gradient descent (online GD), which incrementally

updates model parameters as new data points arrive.

See also: algorithm, data, data point, uncertainty, ML, online GD,

model parameters, online learning.

online gradient descent (online GD) Consider an ML method that learns

model parameters w from some parameter space W ⊆ Rd. The learning

process uses data points z(t) that arrive at consecutive time-instants

t = 1, 2, . . .. Let us interpret the data points z(t) as i.i.d. copies of an

RV z. The risk E{L (z,w)} of a hypothesis h(w) can then (under mild

conditions) be obtained as the limit limT→∞(1/T )
∑T

t=1 L
(
z(t),w

)
. We

might use this limit as the objective function for learning the model

parameters w. Unfortunately, this limit can only be evaluated if we wait

infinitely long in order to collect all data points. Some ML applications

require methods that learn online, i.e., as soon as a new data point z(t)

arrives at time t, we update the current model parameters w(t). Note

that the new data point z(t) contributes the component L
(
z(t),w

)
to

the risk. As its name suggests, online GD updates w(t) via a (projected)

94



gradient step such that

w(t+1) := PW
(
w(t) − ηt∇wL

(
z(t),w

) )
. (10)

Note that (10) is a gradient step for the current component L
(
z(t), ·

)
of the risk. The update (10) ignores all the previous components

L
(
z(t

′), ·
)
, for t′ < t. It might therefore happen that, compared to w(t),

the updated model parameters w(t+1) increase the retrospective average

loss
∑t−1

t′=1 L
(
z(t

′), ·
)
. However, for a suitably chosen learning rate ηt,

online GD can be shown to be optimal in practically relevant settings.

By optimal, we mean that the model parameters w(T+1) delivered by

online GD after observing T data points z(1), . . . , z(T ) are at least as

good as those delivered by any other learning method [45], [89].

t = 1 t = 2 t = 3 t = 4 t = 5

z(1)

z(2)

z(3)

z(4)

z(5)

w(1)

w(2)
w(3)

w(4)

w(5)

Fig. 24. An instance of online GD that updates the model parameters w(t)

using the data point z(t) = x(t) arriving at time t. This instance uses the

squared error loss L
(
z(t), w

)
= (x(t) − w)2.

See also: ML, model parameters, parameter space, data point, i.i.d., RV,

95



risk, hypothesis, objective function, GD, gradient step, loss, learning

rate, squared error loss.

online learning Some ML methods are designed to process data in a se-

quential manner, updating their model parameters as new data points

become available—one at a time. A typical example is time series data,

such as daily minimum and maximum temperatures recorded by a FMI

weather station. These values form a chronological sequence of obser-

vations. In online learning, the hypothesis (or its model parameters)

is refined incrementally with each newly observed data point, without

revisiting past data.

See also: ML, data, model parameters, data point, FMI, hypothesis,

online GD, online algorithm.

optimism in the face of uncertainty ML methods learn model parame-

ters w according to some performance criterion f̄(w). However, they

usually cannot access f̄(w) directly but rely on an estimate (or ap-

proximation) f(w) of f̄(w). As a case in point, ERM-based methods

use the average loss on a given dataset (i.e., the training set) as an

estimate for the risk of a hypothesis. Using a probabilistic model, one

can construct a confidence interval
[
l(w), u(w)

]
for each choice w for

the model parameters. One simple construction is l(w) := f(w)− σ/2,

u(w) := f(w)+σ/2, with σ being a measure of the (expected) deviation

of f(w) from f̄(w). We can also use other constructions for this inter-

val as long as they ensure that f̄(w) ∈
[
l(w), u(w)

]
with a sufficiently

high probability. An optimist chooses the model parameters according

96



to the most favorable—yet still plausible—value f̃(w) := l(w) of the

performance criterion. Two examples of ML methods that use such an

optimistic construction of an objective function are SRM [65, Ch. 11]

and upper confidence bound (UCB) methods for sequential decision

making [84, Sec. 2.2].

f(w)

f̃(w)[
l(w),u(w)

]
Fig. 25. ML methods learn model parameters w by using some estimate

of f(w) for the ultimate performance criterion f̄(w). Using a probabilistic

model, one can use f(w) to construct confidence intervals
[
l(w), u(w)

]
which

contain f̄(w) with a high probability. The best plausible performance measure

for a specific choice w of model parameters is f̃(w) := l(w).

See also: ML, model parameters, ERM, loss, dataset, training set, risk,

hypothesis, probabilistic model, probability, objective function, SRM,

UCB.

optimization problem An optimization problem is a mathematical struc-

ture consisting of an objective function f : U → V defined over an

97



optimization variable w ∈ U , together with a feasible set W ⊆ U .

The co-domain V is assumed to be ordered, meaning that for any two

elements a,b ∈ V, we can determine whether a < b, a = b, or a > b.

The goal of optimization is to find those values w ∈ W for which the

objective f(w) is extremal – i.e., minimal or maximal [22,87,108].

outlier Many ML methods are motivated by the i.i.d. assumption, which

interprets data points as realizations of i.i.d. RVs with a common

probability distribution. The i.i.d. assumption is useful for applications

where the statistical properties of the data generation process are

stationary (or time-invariant) [90]. However, in some applications the

data consists of a majority of regular data points that conform with an

i.i.d. assumption as well as a small number of data points that have

fundamentally different statistical properties compared to the regular

data points. We refer to a data point that substantially deviates from

the statistical properties of most data points as an outlier. Different

methods for outlier detection use different measures for this deviation.

Statistical learning theory studies fundamental limits on the ability to

mitigate outliers reliably [91], [92].

See also: ML, i.i.d. assumption, data point, realization, i.i.d., RV,

probability distribution, data.

overfitting Consider an ML method that uses ERM to learn a hypothesis

with the minimum empirical risk on a given training set. Such a method

is overfitting the training set if it learns a hypothesis with a small

empirical risk on the training set but a significantly larger loss outside

98



the training set.

See also: ML, ERM, hypothesis, minimum, empirical risk, training set,

loss.

parameter space The parameter space W of an ML model H is the set

of all feasible choices for the model parameters (see Fig. 26). Many

important ML methods use a model that is parametrized by vectors

of the Euclidean space Rd. Two widely used examples of parametrized

models are linear models and deep nets. The parameter space is then

often a subset W ⊆ Rd, e.g., all vectors w ∈ Rd with a norm smaller

than one.

parameter space W

w
w′

model H

h(w)

h(w′)

Fig. 26. The parameter space W of an ML model H consists of all feasible

choices for the model parameters. Each choice w for the model parameters

selects a hypothesis map h(w) ∈ H.

See also: ML, model, model parameters, Euclidean space, linear model,

deep net, norm, hypothesis.

parameters The parameters of an ML model are tunable (i.e., learnable

or adjustable) quantities that allow us to choose between different

99



hypothesis maps. For example, the linear model H := {h(w) : h(w)(x) =

w1x + w2} consists of all hypothesis maps h(w)(x) = w1x + w2 with

a particular choice for the parameters w =
(
w1, w2

)T ∈ R2. Another

example of parameters is the weights assigned to the connections between

neurons of an ANN.

See also: ML, model, hypothesis, linear model, weights, ANN.

polynomial regression Polynomial regression aims at learning a polyno-

mial hypothesis map to predict a numeric label based on the nu-

meric features of a data point. For data points characterized by a

single numeric feature, polynomial regression uses the hypothesis space

H(poly)
d := {h(x) =

∑d−1
j=0 x

jwj}. The quality of a polynomial hypothesis

map is measured using the average squared error loss incurred on a set

of labeled datapoints (which we refer to as the training set).

See also: regression, hypothesis, label, feature, data point, hypothesis

space, squared error loss, labeled datapoint, training set.

positive semi-definite (psd) A (real-valued) symmetric matrix Q = QT ∈

Rd×d is referred to as psd if xTQx ≥ 0 for every vector x ∈ Rd. The

property of being psd can be extended from matrices to (real-valued)

symmetric kernel maps K : X × X → R (with K(x,x′) = K(x′,x)) as

follows: For any finite set of feature vectors x(1), . . . ,x(m), the resulting

matrix Q ∈ Rm×m with entries Qr,r′ = K
(
x(r),x(r′)

)
is psd [56].

See also: kernel, feature vector.

prediction A prediction is an estimate or approximation for some quantity

of interest. ML revolves around learning or finding a hypothesis map h

100



that reads in the features x of a data point and delivers a prediction

ŷ := h(x) for its label y.

See also: ML, hypothesis, feature, data point, label.

predictor A predictor is a real-valued hypothesis map. Given a data point

with features x, the value h(x) ∈ R is used as a prediction for the true

numeric label y ∈ R of the data point.

See also: hypothesis, data point, feature, prediction, label.

principal component analysis (PCA) PCA determines a linear feature

map such that the new features allow us to reconstruct the original

features with the minimum reconstruction error [8].

See also: feature map, feature, minimum.

privacy funnel The privacy funnel is a method for learning privacy-friendly

features of data points [93].

See also: feature, data point.

privacy leakage Consider an ML application that processes a dataset D

and delivers some output, such as the predictions obtained for new data

points. Privacy leakage arises if the output carries information about a

private (or sensitive) feature of a data point (which might be a human)

of D. Based on a probabilistic model for the data generation, we can

measure the privacy leakage via the MI between the output and the

sensitive feature. Another quantitative measure of privacy leakage is

DP. The relations between different measures of privacy leakage have

been studied in the literature (see [94]).

101



See also: ML, dataset, prediction, data point, feature, probabilistic

model, data, MI, DP.

privacy protection Consider some ML method A that reads in a dataset D

and delivers some output A(D). The output could be the learned model

parameters ŵ or the prediction ĥ(x) obtained for a specific data point

with features x. Many important ML applications involve data points

representing humans. Each data point is characterized by features x,

potentially a label y, and a sensitive attribute s (e.g., a recent medical

diagnosis). Roughly speaking, privacy protection means that it should

be impossible to infer, from the output A(D), any of the sensitive

attributes of data points in D. Mathematically, privacy protection

requires non-invertibility of the map A(D). In general, just making

A(D) non-invertible is typically insufficient for privacy protection. We

need to make A(D) sufficiently non-invertible.

See also: ML, dataset, model parameters, prediction, data point, feature,

label, sensitive attribute.

probabilistic model A probabilistic model interprets data points as realiza-

tions of RVs with a joint probability distribution. This joint probability

distribution typically involves parameters which have to be manually

chosen or learned via statistical inference methods such as maximum

likelihood estimation [15].

See also: model, data point, realization, RV, probability distribution,

parameters, maximum likelihood.

probabilistic principal component analysis (PPCA) PPCA extends ba-

102



sic PCA by using a probabilistic model for data points. The probabilistic

model of PPCA reduces the task of dimensionality reduction to an esti-

mation problem that can be solved using EM methods.

See also: PCA, probabilistic model, data point, EM.

probability We assign a probability value, typically chosen in the interval

[0, 1], to each event that might occur in a random experiment [6], [7],

[41], [95].

probability density function (pdf) The pdf p(x) of a real-valued RV x ∈

R is a particular representation of its probability distribution. If the

pdf exists, it can be used to compute the probability that x takes on a

value from a (measurable) set B ⊆ R via p(x ∈ B) =
∫
B p(x

′)dx′ [7, Ch.

3]. The pdf of a vector-valued RV x ∈ Rd (if it exists) allows us to

compute the probability of x belonging to a (measurable) region R via

p(x ∈ R) =
∫
R p(x′)dx′

1 . . . dx
′
d [7, Ch. 3].

See also: RV, probability distribution, probability.

probability distribution To analyze ML methods, it can be useful to in-

terpret data points as i.i.d. realizations of an RV. The typical properties

of such data points are then governed by the probability distribution of

this RV. The probability distribution of a binary RV y ∈ {0, 1} is fully

specified by the probabilities p(y = 0) and p(y = 1)=1−p(y = 0). The

probability distribution of a real-valued RV x ∈ R might be specified by

a pdf p(x) such that p(x ∈ [a, b]) ≈ p(a)|b−a|. In the most general case,

a probability distribution is defined by a probability measure [6], [17].

See also: ML, data point, i.i.d., realization, RV, probability, pdf.

103



probability space A probability space is a mathematical model of a phys-

ical process (i.e., a random experiment) with an uncertain outcome.

Formally, a probability space P is a triplet (Ω,F , P ) where

• Ω is a sample space containing all possible elementary outcomes

of a random experiment;

• F is a sigma-algebra, i.e., a collection of subsets of Ω (called events)

that satisfies certain closure properties under set operations;

• P is a probability measure, i.e., a function that assigns a prob-

ability P (A) ∈ [0, 1] to each event A ∈ F . The function must

satisfy P (Ω) = 1 and P (
⋃∞

i=1Ai) =
∑∞

i=1 P (Ai) for any countable

sequence of pairwise disjoint events A1,A2, . . . in F .

Probability spaces provide the foundation for defining RVs and to reason

about uncertainty in ML applications [6], [17], [64].

See also: probability, model, RV, uncertainty, ML.

projected gradient descent (projected GD) Consider an ERM-based

method that uses a parametrized model with parameter space W ⊆ Rd.

Even if the objective function of ERM is smooth, we cannot use basic

GD, as it does not take into account contraints on the optimization

variable (i.e., the model parameters). Projected GD extends basic

GD to handle constraints on the optimization variable (i.e., the model

parameters). A single iteration of projected GD consists of first taking

a gradient step and then projecting the result back onto the parameter

space.

104



f(w)

w
grad. step

ŵ = w−η∇f
(
w
)

PW
(
ŵ
)W

Fig. 27. Projected GD augments a basic gradient step with a projection back

onto the constraint set W .

See also: ERM, model, parameter space, objective function, smooth,

GD, model parameters, gradient step, projection.

projection Consider a subset W ⊆ Rd of the d-dimensional Euclidean space.

We define the projection PW
(
w
)

of a vector w ∈ Rd onto W as

PW
(
w
)
= argmin

w′∈W
∥w −w′∥2 . (11)

In other words, PW
(
w
)

is the vector in W which is closest to w.

The projection is only well-defined for subsets W for which the above

minimum exists [22].

See also: Euclidean space, minimum.

proximable A convex function for which the proximal operator can be

computed efficiently is sometimes referred to as proximable or simple

[96].

See also: convex, proximal operator.

proximal operator Given a convex function f(w′), we define its proximal

105



operator as [70], [97]

proxf(·),ρ(w) := argmin
w′∈Rd

[
f(w′)+(ρ/2) ∥w −w′∥22

]
with ρ > 0.

As illustrated in Fig. 28, evaluating the proximal operator amounts to

minimizing a penalized variant of f(w′). The penalty term is the scaled

squared Euclidean distance to a given vector w (which is the input to

the proximal operator). The proximal operator can be interpreted as a

generalization of the gradient step, which is defined for a smooth convex

function f(w′). Indeed, taking a gradient step with step size η at the

current vector w is the same as applying the proximal operator of the

function f̃(w′) =
(
∇f(w)

)T
(w′ −w) and using ρ = 1/η.

f(w′)

(1/η) ∥w −w′∥22

w

Fig. 28. A generalized gradient step updates a vector w by minimizing a

penalized version of the function f(·). The penalty term is the scaled squared

Euclidean distance between the optimization variable w′ and the given vector

w.

See also: convex, generalization, gradient step, smooth, step size.

106



quadratic function A function f : Rd → R of the form

f(w) = wTQw + qTw + a,

with some matrix Q ∈ Rd×d, vector q ∈ Rd, and scalar a ∈ R.

random forest A random forest is a set of different decision trees. Each

of these decision trees is obtained by fitting a perturbed copy of the

original dataset.

See also: decision tree, dataset.

random variable (RV) An RV is a function that maps from a probability

space P to a value space [6], [17]. The probability space consists of

elementary events and is equipped with a probability measure that

assigns probabilities to subsets of P . Different types of RVs include

• binary RVs, which map each elementary event to an element of a

binary set (e.g., {−1, 1} or {cat, no cat};

• real-valued RVs, which take values in the real numbers R;

• vector-valued RVs, which map elementary events to the Euclidean

space Rd.

Probability theory uses the concept of measurable spaces to rigorously

define and study the properties of (large) collections of RVs [6].

See also: probability space, probability, Euclidean space.

realization Consider an RV x which maps each element (i.e., outcome or

elementary event) ω ∈ P of a probability space P to an element a of

107



a measurable space N [2], [6], [41]. A realization of x is any element

a′ ∈ N such that there is an element ω′ ∈ P with x(ω′) = a′.

See also: RV, probability space.

rectified linear unit (ReLU) The ReLU is a popular choice for the acti-

vation function of a neuron within an ANN. It is defined as σ(z) =

max{0, z}, with z being the weighted input of the artificial neuron.

See also: activation function, ANN.

regression Regression problems revolve around the prediction of a numeric

label solely from the features of a data point [8, Ch. 2].

See also: prediction, label, feature, data point.

regret The regret of a hypothesis h relative to another hypothesis h′, which

serves as a baseline, is the difference between the loss incurred by h and

the loss incurred by h′ [44]. The baseline hypothesis h′ is also referred

to as an expert.

See also: hypothesis, baseline, loss, expert.

regularization A key challenge of modern ML applications is that they

often use large models, which have an effective dimension in the order

of billions. Training a high-dimensional model using basic ERM-based

methods is prone to overfitting, i.e., the learned hypothesis performs well

on the training set but poorly outside the training set. Regularization

refers to modifications of a given instance of ERM in order to avoid

overfitting, i.e., to ensure that the learned hypothesis performs not much

worse outside the training set. There are three routes for implementing

regularization:

108



1) Model pruning: We prune the original model H to obtain a smaller

model H′. For a parametric model, the pruning can be implemented

via constraints on the model parameters (such as w1 ∈ [0.4, 0.6]

for the weight of feature x1 in linear regression).

2) Loss penalization: We modify the objective function of ERM by

adding a penalty term to the training error. The penalty term

estimates how much larger the expected loss (or risk) is compared

to the average loss on the training set.

3) Data augmentation: We can enlarge the training set D by adding

perturbed copies of the original data points in D. One example

for such a perturbation is to add the realization of an RV to the

feature vector of a data point.

Fig. 29 illustrates the above three routes to regularization. These routes

are closely related and sometimes fully equivalent. Data augmentation

using Gaussian RVs to perturb the feature vectors in the training set of

linear regression has the same effect as adding the penalty λ ∥w∥22 to

the training error (which is nothing but ridge regression). The decision

on which route to use for regularization can be based on the available

computational infrastructure. For example, it might be much easier to

implement data augmentation than model pruning.

109



feature x

label y

{h : h(x)=w1x+w0;w1 ∈ [0.4, 0.6]}

h(x)

√
α

original training set D
augmented

1
m

∑m
r=1 L

((
x(r), y(r)

)
, h

)
+αR

{
h
}

Fig. 29. Three approaches to regularization: 1) data augmentation; 2) loss

penalization; and 3) model pruning (via constraints on model parameters).

See also: ML, model, effective dimension, ERM, overfitting, hypothesis,

training set, model parameters, feature, linear regression, loss, objective

function, training error, risk, data augmentation, data point, realization,

RV, feature vector, Gaussian RV, ridge regression, label.

regularized empirical risk minimization (RERM) Basic ERM learns

a hypothesis (or trains a model) h ∈ H based solely on the empirical

risk L̂
(
h|D

)
incurred on a training set D. To make ERM less prone

to overfitting, we can implement regularization by including a (scaled)

regularizer R
{
h
}

in the learning objective. This leads to RERM such

that

ĥ ∈ argmin
h∈H

L̂
(
h|D

)
+ αR

{
h
}
. (12)

The parameter α ≥ 0 controls the regularization strength. For α = 0,

110



we recover standard ERM without regularization. As α increases, the

learned hypothesis is increasingly biased toward small values of R
{
h
}
.

The component αR
{
h
}

in the objective function of (12) can be intu-

itively understood as a surrogate for the increased average loss that may

occur when predicting labels for data points outside the training set.

This intuition can be made precise in various ways. For example, con-

sider a linear model trained using squared error loss and the regularizer

R
{
h
}
= ∥w∥22. In this setting, αR

{
h
}

corresponds to the expected

increase in loss caused by adding Gaussian RVs to the feature vectors in

the training set [8, Ch. 3]. A principled construction for the regularizer

R
{
h
}

arises from approximate upper bounds on the generalization error.

The resulting RERM instance is known as SRM [98, Sec. 7.2].

See also: ERM, hypothesis, model, empirical risk, training set, over-

fitting, regularization, regularizer, objective function, loss, label, data

point, linear model, squared error loss, Gaussian RV, feature vector,

generalization, SRM.

regularized loss minimization (RLM) See RERM.

regularizer A regularizer assigns each hypothesis h from a hypothesis space

H a quantitative measure R
{
h
}

for how much its prediction error on a

training set might differ from its prediction errors on data points outside

the training set. Ridge regression uses the regularizer R
{
h
}
:= ∥w∥22

for linear hypothesis maps h(w)(x) := wTx [8, Ch. 3]. Lasso uses the

regularizer R
{
h
}
:= ∥w∥1 for linear hypothesis maps h(w)(x) := wTx [8,

Ch. 3].

111



See also: hypothesis, hypothesis space, prediction, training set, data

point, ridge regression, Lasso.

Rényi divergence The Rényi divergence measures the (dis)similarity be-

tween two probability distributions [99].

See also: probability distribution.

reward A reward refers to some observed (or measured) quantity that allows

us to estimate the loss incurred by the prediction (or decision) of a

hypothesis h(x). For example, in an ML application to self-driving

vehicles, h(x) could represent the current steering direction of a vehicle.

We could construct a reward from the measurements of a collision

sensor that indicate if the vehicle is moving towards an obstacle. We

define a low reward for the steering direction h(x) if the vehicle moves

dangerously towards an obstacle.

See also: loss, prediction, hypothesis, ML.

ridge regression Ridge regression learns the weights w of a linear hypothesis

map h(w)(x) = wTx. The quality of a particular choice for the model

parameters w is measured by the sum of two components. The first

component is the average squared error loss incurred by h(w) on a set of

labeled datapoints (i.e., the training set). The second component is the

scaled squared Euclidean norm α∥w∥22 with a regularization parameter

α > 0. Adding α∥w∥22 to the average squared error loss is equivalent to

replacing original data points by the realizations of (infinitely many)

i.i.d. RVs centered around these data points (see regularization).

See also: regression, weights, hypothesis, model parameters, squared

112



error loss, labeled datapoint, training set, norm, regularization, data

point, realization, i.i.d., RV.

risk Consider a hypothesis h used to predict the label y of a data point based

on its features x. We measure the quality of a particular prediction

using a loss function L ((x, y), h). If we interpret data points as the

realizations of i.i.d. RVs, also the L ((x, y), h) becomes the realization of

an RV. The i.i.d. assumption allows us to define the risk of a hypothesis

as the expected loss E
{
L ((x, y), h)

}
. Note that the risk of h depends

on both the specific choice for the loss function and the probability

distribution of the data points.

See also: hypothesis, label, data point, feature, prediction, loss function,

realization, i.i.d. RV, i.i.d. assumption, loss, probability distribution.

sample A finite sequence (or list) of data points z(1), . . . , z(m) that is ob-

tained or interpreted as the realization of m i.i.d. RVs with a common

probability distribution p(z). The length m of the sequence is referred

to as the sample size.

See also: data point, realization, i.i.d., RV, probability distribution,

sample size.

sample covariance matrix The sample covariance matrix Σ̂ ∈ Rd×d for a

given set of feature vectors x(1), . . . ,x(m) ∈ Rd is defined as

Σ̂ = (1/m)
m∑
r=1

(x(r)−m̂)(x(r)−m̂)T .

Here, we use the sample mean m̂.

See also: sample, covariance matrix, feature vector, sample mean.

113



sample mean The sample mean m ∈ Rd for a given dataset, with feature

vectors x(1), . . . ,x(m) ∈ Rd, is defined as

m = (1/m)
m∑
r=1

x(r).

See also: sample, mean, dataset, feature vector.

sample size The number of individual data points contained in a dataset.

See also: data point, dataset.

scatterplot A visualization technique that depicts data points by markers

in a two-dimensional plane. Fig. 30 depicts an example of a scatterplot.

x

y

Fig. 30. A scatterplot with circle markers, where the data points represent

daily weather conditions in Finland. Each data point is characterized by its

minimum daytime temperature x as the feature and its maximum daytime

temperature y as the label. The temperatures have been measured at the

FMI weather station Helsinki Kaisaniemi during 1.9.2024 - 28.10.2024.

A scatterplot can enable the visual inspection of data points that are

naturally represented by feature vectors in high-dimensional spaces.

114



See also: data point, minimum, feature, maximum, label, FMI, feature

vector, dimensionality reduction.

semi-supervised learning (SSL) SSL methods use unlabeled data points

to support the learning of a hypothesis from labeled datapoints [20].

This approach is particularly useful for ML applications that offer a

large amount of unlabeled data points, but only a limited number of

labeled datapoints.

See also: data point, hypothesis, labeled datapoint, ML.

sensitive attribute ML revolves around learning a hypothesis map that

allows us to predict the label of a data point from its features. In some

applications, we must ensure that the output delivered by an ML system

does not allow us to infer sensitive attributes of a data point. Which

part of a data point is considered a sensitive attribute is a design choice

that varies across different application domains.

See also: ML, hypothesis, label, data point, feature.

similarity graph Some ML applications generate data points that are re-

lated by a domain-specific notion of similarity. These similarities

can be represented conveniently using a similarity graph G =
(
V :=

{1, . . . ,m}, E
)
. The node r ∈ V represents the r-th data point. Two

nodes are connected by an undirected edge if the corresponding data

points are similar.

See also: ML, data point, graph.

singular value decomposition (SVD) The SVD for a matrix A ∈ Rm×d

115



is a factorization of the form

A = VΛUT ,

with orthonormal matrices V ∈ Rm×m and U ∈ Rd×d [3]. The matrix

Λ ∈ Rm×d is only non-zero along the main diagonal, whose entries Λj,j

are non-negative and referred to as singular values.

smooth A real-valued function f : Rd → R is smooth if it is differentiable

and its gradient ∇f(w) is continuous at all w ∈ Rd [87], [100]. A

smooth function f is referred to as β-smooth if the gradient ∇f(w) is

Lipschitz continuous with Lipschitz constant β, i.e.,

∥∇f(w)−∇f(w′)∥ ≤ β∥w −w′∥, for any w,w′ ∈ Rd.

The constant β quantifies the amount of smoothness of the function f :

the smaller the β, the smoother f is. Optimization problems with a

smooth objective function can be solved effectively by gradient-based

methods. Indeed, gradient-based methods approximate the objective

function locally around a current choice w using its gradient. This

approximation works well if the gradient does not change too rapidly.

We can make this informal claim precise by studying the effect of a

single gradient step with step size η = 1/β (see Fig. 31).

116



∇f(w)

w(k)

∇f(w(k))

w w(k+1)=w(k)−(1/β)∇f(w(k))

f
(
w(k)

)
−f

(
w(k+1)

)
≥ 1

2β

∥∥∇f(w(k))
∥∥2

2

Fig. 31. Consider an objective function f(w) that is β-smooth. Taking a

gradient step, with step size η = 1/β, decreases the objective by at least
1
2β

∥∥∇f(w(k))
∥∥2

2
[87], [100], [101]. Note that the step size η = 1/β becomes

larger for smaller β. Thus, for smoother objective functions (i.e., those with

smaller β), we can take larger steps.

See also: differentiable, gradient, objective function, gradient-based

methods, gradient step, step size.

soft clustering Soft clustering refers to the task of partitioning a given set

of data points into (a few) overlapping clusters. Each data point is

assigned to several different clusters with varying degrees of belonging.

Soft clustering methods determine the degree of belonging (or soft cluster

assignment) for each data point and each cluster. A principled approach

to soft clustering is by interpreting data points as i.i.d. realizations of

a GMM. We then obtain a natural choice for the degree of belonging

as the conditional probability of a data point belonging to a specific

mixture component.

See also: clustering, data point, cluster, degree of belonging, i.i.d.,

117



realization, GMM, probability.

spectral clustering Spectral clustering is a particular instance of graph

clustering, i.e., it clusters data points represented as the nodes i =

1, . . . , n of a graph G. Spectral clustering uses the eigenvectors of the

Laplacian matrix L(G) to construct feature vectors x(i) ∈ Rd for each

node (i.e., for each data point) i = 1, . . . , n. We can feed these feature

vectors into Euclidean space-based clustering methods, such as k-means

or soft clustering via GMM. Roughly speaking, the feature vectors of

nodes belonging to a well-connected subset (or cluster) of nodes in G

are located nearby in the Euclidean space Rd (see Fig. 32).

118



i = 1

2 3

4
L(G)=


2 −1 −1 0

−1 1 0 0

−1 0 1 0

0 0 0 0

=VΛVT

v
(1)
i

v
(2)
i

i = 1, 2, 3

4 V =
(
v(1),v(2),v(3),v(4)

)

v(1)=
1√
3


1

1

1

0

 , v(2)=


0

0

0

1


Fig. 32. Top. Left: An undirected graph G with four nodes i = 1, 2, 3, 4, each

representing a data point. Right: The Laplacian matrix L(G) ∈ R4×4 and its

EVD. Bottom. Left: A scatterplot of data points using the feature vectors

x(i) =
(
v
(1)
i , v

(2)
i

)T . Right: Two eigenvectors v(1),v(2) ∈ Rd corresponding to

the eigenvalue λ = 0 of the Laplacian matrix L(G).

See also: clustering, graph clustering, data point, graph, eigenvector,

Laplacian matrix, feature vector, Euclidean space, k-means, soft clus-

tering, GMM, cluster, EVD, scatterplot, eigenvalue.

119



spectrogram A spectrogram represents the time-frequency distribution of

the energy of a time signal x(t). Intuitively, it quantifies the amount

of signal energy present within a specific time segment [t1, t2] ⊆ R and

frequency interval [f1, f2] ⊆ R. Formally, the spectrogram of a signal is

defined as the squared magnitude of its short-time Fourier transform

(STFT) [102]. Fig. 33 depicts a time signal along with its spectrogram.

Fig. 33. Left: A time signal consisting of two modulated Gaussian pulses.

Right: An intensity plot of the spectrogram.

The intensity plot of its spectrogram can serve as an image of a signal.

A simple recipe for audio signal classification is to feed this signal image

into deep nets originally developed for image classification and object

detection [103]. It is worth noting that, beyond the spectrogram, several

alternative representations exist for the time-frequency distribution of

signal energy [104], [105].

See also: classification, deep net.

squared error loss The squared error loss measures the prediction error of

120



a hypothesis h when predicting a numeric label y ∈ R from the features

x of a data point. It is defined as

L ((x, y), h) :=
(
y − h(x)︸︷︷︸

=ŷ

)2
.

See also: loss, prediction, hypothesis, label, feature, data point.

stability Stability is a desirable property of an ML method A that maps a

dataset D (e.g., a training set) to an output A(D). The output A(D)

can be the learned model parameters or the prediction delivered by the

trained model for a specific data point. Intuitively, A is stable if small

changes in the input dataset D lead to small changes in the output

A(D). Several formal notions of stability exist that enable bounds on

the generalization error or risk of the method (see [65, Ch. 13]). To build

intuition, consider the three datasets depicted in Fig. 34, each of which

is equally likely under the same data-generating probability distribution.

Since the optimal model parameters are determined by this underlying

probability distribution, an accurate ML method A should return the

same (or very similar) output A(D) for all three datasets. In other

words, any useful A must be robust to variability in sample realizations

from the same probability distribution, i.e., it must be stable.

121



Fig. 34. Three datasets D(∗), D(□), and D(△), each sampled independently

from the same data-generating probability distribution. A stable ML method

should return similar outputs when trained on any of these datasets.

See also: ML, dataset, training set, model parameters, prediction, model,

data point, generalization, risk, data, probability distribution, sample,

realization.

standard normal vector A standard normal vector is a random vector

x =
(
x1, . . . , xd

)T whose entries are i.i.d. Gaussian RVs xj ∼ N (0, 1).

It is a special case of a multivariate normal distribution, x ∼ (0, I).

See also: i.i.d., Gaussian RV, multivariate normal distribution, RV.

statistical aspects By statistical aspects of an ML method, we refer to

(properties of) the probability distribution of its output under a proba-

bilistic model for the data fed into the method.

See also: ML, probability distribution, probabilistic model, data.

step size See learning rate.

122



stochastic block model (SBM) The SBM is a probabilistic generative

model for an undirected graph G =
(
V , E

)
with a given set of nodes

V [106]. In its most basic variant, the SBM generates a graph by first

randomly assigning each node i ∈ V to a cluster index ci ∈ {1, . . . , k}.

A pair of different nodes in the graph is connected by an edge with

probability pi,i′ that depends solely on the labels ci, ci′ . The presence of

edges between different pairs of nodes is statistically independent.

See also: model, graph, cluster, probability, label.

stochastic gradient descent (SGD) SGD is obtained from GD by replac-

ing the gradient of the objective function with a stochastic approxi-

mation. A main application of SGD is to train a parametrized model

via ERM on a training set D that is either very large or not readily

available (e.g., when data points are stored in a database distributed

all over the planet). To evaluate the gradient of the empirical risk (as

a function of the model parameters w), we need to compute a sum∑m
r=1 ∇wL

(
z(r),w

)
over all data points in the training set. We ob-

tain a stochastic approximation to the gradient by replacing the sum∑m
r=1 ∇wL

(
z(r),w

)
with a sum

∑
r∈B ∇wL

(
z(r),w

)
over a randomly

chosen subset B ⊆ {1, . . . ,m} (see Fig. 35). We often refer to these

randomly chosen data points as a batch. The batch size |B| is an impor-

tant parameter of SGD. SGD with |B| > 1 is referred to as mini-batch

SGD [107].

123



∑m
r=1 ∑

r∈B

Fig. 35. SGD for ERM approximates the gradient
∑m

r=1∇wL
(
z(r),w

)
by

replacing the sum over all data points in the training set (indexed by r =

1, . . . ,m) with a sum over a randomly chosen subset B ⊆ {1, . . . ,m}.

See also: GD, gradient, objective function, model, ERM, training set,

data point, empirical risk, model parameters, batch.

stopping criterion Many ML methods use iterative algorithms that con-

struct a sequence of model parameters (such as the weights of a linear

map or the weights of an ANN). These parameters (hopefully) converge

to an optimal choice for the model parameters. In practice, given finite

computational resources, we need to stop iterating after a finite num-

ber of repetitions. A stopping criterion is any well-defined condition

required for stopping the iteration.

See also: ML, algorithm, model parameters, weights, ANN.

strongly convex A continuously differentiable real-valued function f(x) is

strongly convex with coefficient σ if f(y) ≥ f(x) +∇f(x)T (y − x) +

(σ/2) ∥y − x∥22 [87], [101, Sec. B.1.1].

See also: differentiable, convex.

structural risk minimization (SRM) SRM is an instance of RERM, with

which the model H can be expressed as a countable union of submodels

124



such that H =
⋃∞

n=1H(n). Each submodel H(n) permits the derivation

of an approximate upper bound on the generalization error incurred

when applying ERM to train H(n). These individual bounds—one for

each submodel—are then combined to form a regularizer used in the

RERM objective. These approximate upper bounds (one for each H(n))

are then combined to construct a regularizer for RERM [65, Sec. 7.2].

See also: RERM, model, generalization, ERM, regularizer, risk.

subgradient For a real-valued function f : Rd → R : w 7→ f(w), a vector a

such that f(w) ≥ f(w′) +
(
w −w′)Ta is referred to as a subgradient

of f at w′ [39], [108].

subgradient descent Subgradient descent is a generalization of GD that

does not require differentiability of the function to be minimized. This

generalization is obtained by replacing the concept of a gradient with

that of a subgradient. Similar to gradients, also subgradients allow us to

construct local approximations of an objective function. The objective

function might be the empirical risk L̂
(
h(w)

∣∣D)
viewed as a function of

the model parameters w that select a hypothesis h(w) ∈ H.

See also: subgradient, generalization, GD, gradient, objective function,

empirical risk, model parameters, hypothesis.

support vector machine (SVM) The SVM is a binary classification method

that learns a linear hypothesis map. Thus, like linear regression and

logistic regression, it is also an instance of ERM for the linear model.

However, the SVM uses a different loss function from the one used in

those methods. As illustrated in Fig. 36, it aims to maximally separate

125



data points from the two different classes in the feature space (i.e.,

maximum margin principle). Maximizing this separation is equivalent

to minimizing a regularized variant of the hinge loss (6) [42], [75], [109].

x(5)

x(4)

x(3)

x(6)

support vector

ξ
h(w)

x(2)

x(1)

Fig. 36. The SVM learns a hypothesis (or classifier) h(w) with minimal average

soft-margin hinge loss. Minimizing this loss is equivalent to maximizing the

margin ξ between the decision boundary of h(w) and each class of the training

set.

The above basic variant of SVM is only useful if the data points from

different categories can be (approximately) linearly separated. For an

ML application where the categories are not derived from a kernel.

See also: classification, hypothesis, linear regression, logistic regression,

ERM, linear model, loss function, data point, feature space, maximum,

hinge loss, SVM, classifier, loss, decision boundary, training set, ML,

kernel.

supremum (or least upper bound) The supremum of a set of real num-

bers is the smallest number that is greater than or equal to every element

in the set. More formally, a real number a is the supremum of a set

126



A ⊆ R if: 1) a is an upper bound of A; and 2) no number smaller

than a is an upper bound of A. Every non-empty set of real numbers

that is bounded above has a supremum, even if it does not contain its

supremum as an element [2, Sec. 1.4].

test set A set of data points that have been used neither to train a model

(e.g., via ERM) nor in a validation set to choose between different

models.

See also: data point, model, ERM, validation set.

total variation See GTV.

training error The average loss of a hypothesis when predicting the labels

of the data points in a training set. We sometimes refer by training

error also to minimal average loss which is achieved by a solution of

ERM.

See also: loss, hypothesis, label, data point, training set, ERM.

training set A training set is a dataset D which consists of some data points

used in ERM to learn a hypothesis ĥ. The average loss of ĥ on the

training set is referred to as the training error. The comparison of the

training error with the validation error of ĥ allows us to diagnose the

ML method and informs how to improve the validation error (e.g., using

a different hypothesis space or collecting more data points) [8, Sec. 6.6].

See also: dataset, data point, ERM, hypothesis, loss, training error,

validation error, ML, hypothesis space.

127



transparency Transparency is a fundamental requirement for trustworthy

AI [110]. In the context of ML methods, transparency is often used

interchangeably with explainability [48], [111]. However, in the broader

scope of AI systems, transparency extends beyond explainability and

includes providing information about the system’s limitations, reliability,

and intended use. In medical diagnosis systems, transparency requires

disclosing the confidence level for the predictions delivered by a trained

model. In credit scoring, AI-based lending decisions should be accom-

panied by explanations of contributing factors, such as income level or

credit history. These explanations allow humans (e.g., a loan applicant)

to understand and contest automated decisions. Some ML methods

inherently offer transparency. For example, logistic regression provides a

quantitative measure of classification reliability through the value |h(x)|.

Decision trees are another example, as they allow human-readable de-

cision rules [50]. Transparency also requires a clear indication when

a user is engaging with an AI system. For example, AI-powered chat-

bots should notify users that they are interacting with an automated

system rather than a human. Furthermore, transparency encompasses

comprehensive documentation detailing the purpose and design choices

underlying the AI system. For instance, model datasheets [35] and AI

system cards [112] help practitioners understand the intended use cases

and limitations of an AI system [113].

See also: trustworthy AI, ML, explainability, AI, prediction, model,

logistic regression, classification, decision tree.

trustworthy artificial intelligence (trustworthy AI) Besides the com-

128



putational aspects and statistical aspects, a third main design aspect of

ML methods is their trustworthiness [114]. The EU has put forward

seven key requirements (KRs) for trustworthy AI (that typically build

on ML methods) [115]:

1) KR1 - Human agency and oversight;

2) KR2 - Technical robustness and safety;

3) KR3 - Privacy and data governance;

4) KR4 - Transparency;

5) KR5 - Diversity, non-discrimination and fairness;

6) KR6 - Societal and environmental well-being;

7) KR7 - Accountability.

See also: computational aspects, statistical aspects, ML, AI.

uncertainty Uncertainty refers to the degree of confidence—or lack thereof—associated

with a quantity such as a model prediction, parameter estimate, or ob-

served data point. In ML, uncertainty arises from various sources,

including noisy data, limited training samples, or ambiguity in model

assumptions. Probability theory offers a principled framework for rep-

resenting and quantifying such uncertainty.

See also: model, prediction, data point, ML, data, sample, probability.

underfitting Consider an ML method that uses ERM to learn a hypothesis

with the minimum empirical risk on a given training set. Such a method

is underfitting the training set if it is not able to learn a hypothesis

129



with a sufficiently small empirical risk on the training set. If a method

is underfitting, it will typically also not be able to learn a hypothesis

with a small risk.

See also: ML, ERM, hypothesis, minimum, empirical risk, training set,

risk.

upper confidence bound (UCB) Consider an ML application that re-

quires selecting, at each time step k, an action ak from a finite set of

alternatives A. The utility of selecting action ak is quantified by a

numeric reward signal r(ak). A widely used probabilistic model for this

type of sequential decision-making problem is the stochastic MAB set-

ting [84]. In this model, the reward r(a) is viewed as the realization of an

RV with unknown mean µ(a). Ideally, we would always choose the action

with the largest expected reward µ(a), but these means are unknown

and must be estimated from observed data. Simply choosing the action

with the largest estimate µ̂(a) can lead to suboptimal outcomes due to

estimation uncertainty. The UCB strategy addresses this by selecting

actions not only based on their estimated means but also by incorpo-

rating a term that reflects the uncertainty in these estimates—favoring

actions with a high potential reward and high uncertainty. Theoretical

guarantees for the performance of UCB strategies, including logarithmic

regret bounds, are established in [84].

See also: ML, reward, probabilistic model, MAB, model, realization,

RV, mean, data, uncertainty, regret.

validation Consider a hypothesis ĥ that has been learned via some ML

130



method, e.g., by solving ERM on a training set D. Validation refers to

the practice of evaluating the loss incurred by the hypothesis ĥ on a set

of data points that are not contained in the training set D.

See also: hypothesis, ML, ERM, training set, loss, data point.

validation error Consider a hypothesis ĥ which is obtained by some ML

method, e.g., using ERM on a training set. The average loss of ĥ on a

validation set, which is different from the training set, is referred to as

the validation error.

See also: hypothesis, ML, ERM, training set, loss, validation set, vali-

dation.

validation set A set of data points used to estimate the risk of a hypothesis

ĥ that has been learned by some ML method (e.g., solving ERM). The

average loss of ĥ on the validation set is referred to as the validation

error and can be used to diagnose an ML method (see [8, Sec. 6.6]).

The comparison between training error and validation error can inform

directions for improvement of the ML method (such as using a different

hypothesis space).

See also: data point, risk, hypothesis, ML, ERM, loss, validation,

validation error, training error, hypothesis space.

Vapnik–Chervonenkis dimension (VC dimension) The VC dimension

of an infinite hypothesis space is a widely-used measure for its size. We

refer to the literature (see [65]) for a precise definition of VC dimension

as well as a discussion of its basic properties and use in ML.

See also: hypothesis space, ML.

131



variance The variance of a real-valued RV x is defined as the expectation

E
{(

x−E{x}
)2} of the squared difference between x and its expectation

E{x}. We extend this definition to vector-valued RVs x as E
{∥∥x −

E{x}
∥∥2

2

}
.

See also: RV, expectation.

vertical federated learning (VFL) VFL refers to FL applications where

devices have access to different features of the same set of data points

[116]. Formally, the underlying global dataset is

D(global) :=
{(

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)}
.

We denote by x(r) =
(
x
(r)
1 , . . . , x

(r)
d′

)T , for r = 1, . . . ,m, the complete

feature vectors for the data points. Each device i ∈ V observes only

a subset F (i) ⊆ {1, . . . , d′} of features, resulting in a local dataset D(i)

with feature vectors

x(i,r) =
(
x
(r)
j1
, . . . , x

(r)
jd

)T
.

Some of the devices might also have access to the labels y(r), for r =

1, . . . ,m, of the global dataset. One potential application of VFL is

to enable collaboration between different healthcare providers. Each

provider collects distinct types of measurements—such as blood values,

electrocardiography, and lung X-rays—for the same patients. Another

application is a national social insurance system, where health records,

financial indicators, consumer behavior, and mobility data are collected

by different institutions. VFL enables joint learning across these parties

while allowing well-defined levels of privacy protection.

132



x
(1)
1 x

(1)
2 · · · x

(1)
d y(1)

x
(2)
1 x

(2)
2 · · · x

(2)
d y(2)

x
(m)
1 x

(m)
2 · · · x

(m)
d y(m)

D(global)D(1)

D(i)

Fig. 37. VFL uses local datasets that are derived from the data points of a

common global dataset. The local datasets differ in the choice of features

used to characterize the data points.

See also: FL, device, feature, data point, dataset, feature vector, local

dataset, label, data, privacy protection.

weights Consider a parametrized hypothesis space H. We use the term

weights for numeric model parameters that are used to scale features or

their transformations in order to compute h(w) ∈ H. A linear model uses

weights w =
(
w1, . . . , wd

)T to compute the linear combination h(w)(x) =

wTx. Weights are also used in ANNs to form linear combinations of

features or the outputs of neurons in hidden layers.

See also: hypothesis space, model parameters, feature, linear model,

ANN.

133



zero-gradient condition Consider the unconstrained optimization problem

minw∈Rd f(w) with a smooth and convex objective function f(w). A

necessary and sufficient condition for a vector ŵ ∈ Rd to solve this

problem is that the gradient ∇f
(
ŵ
)

is the zero vector such that

∇f
(
ŵ
)
= 0 ⇔ f

(
ŵ
)
= min

w∈Rd
f(w).

See also: smooth, convex, objective function, gradient.

0/1 loss The 0/1 loss L(0/1) ((x, y) , h) measures the quality of a classifier

h(x) that delivers a prediction ŷ (e.g., via thresholding (1)) for the label

y of a data point with features x. It is equal to 0 if the prediction is

correct, i.e., L(0/1) ((x, y) , h) = 0 when ŷ = y. It is equal to 1 if the

prediction is wrong, i.e., L(0/1) ((x, y) , h) = 1 when ŷ ̸= y.

See also: loss, classifier, prediction, label, data point, feature.

134



Index

0/1 loss, 134

k-fold cross-validation (k-fold CV),

18

k-means, 18

absolute error loss, 18

accuracy, 19

activation function, 19

algebraic connectivity, 19

algorithm, 19

application programming interface

(API), 20

artificial intelligence (AI), 21

artificial neural network (ANN), 22

attack, 22

autoencoder, 22

backdoor, 22

bagging (or bootstrap

aggregation), 23

baseline, 23

batch, 25

Bayes estimator, 26

Bayes risk, 26

bias, 26

boosting, 27

bootstrap, 28

central limit theorem (CLT), 29

classification, 29

classifier, 29

cluster, 29

clustered federated learning (CFL),

30

clustering, 31

clustering assumption, 31

computational aspects, 32

concentration inequality, 32

condition number, 32

confusion matrix, 33

connected graph, 33

convex, 33

convex clustering, 34

Courant–Fischer–Weyl min-max

characterization, 34

covariance matrix, 34

data, 35

data augmentation, 35

data minimization principle, 36



data normalization, 36

data point, 37

data poisoning, 37

dataset, 38

decision boundary, 40

decision region, 40

decision tree, 40

deep net, 41

degree of belonging, 41

denial-of-service attack, 42

density-based spatial clustering of

applications with noise

(DBSCAN), 42

device, 42

differentiable, 43

differential privacy (DP), 43

dimensionality reduction, 43

discrepancy, 45

distributed algorithm, 45

edge weight, 46

effective dimension, 47

eigenvalue, 47

eigenvalue decomposition (EVD),

47

eigenvector, 47

empirical risk, 48

empirical risk minimization

(ERM), 48

epigraph, 48

estimation error, 49

Euclidean space, 49

expectation, 49

expectation-maximization (EM),

50

expert, 51

explainability, 51

explainable empirical risk

minimization (EERM), 52

explainable machine learning

(XML), 52

explanation, 52

feature, 53

feature learning, 53

feature map, 54

feature matrix, 54

feature space, 55

feature vector, 55

FedAvg, 55

federated learning (FL), 56

federated learning network (FL



network), 56

FedGD, 57

FedProx, 57

FedRelax, 57

FedSGD, 57

Finnish Meteorological Institute

(FMI), 57

flow-based clustering, 57

function, 58

Gaussian mixture model (GMM),

58

Gaussian Process (GP), 58

Gaussian random variable

(Gaussian RV), 59

general data protection regulation

(GDPR), 61

generalization, 62

generalization gap, 63

generalized total variation (GTV),

64

generalized total variation

minimization (GTVMin),

64

geometric median (GM), 64

gradient, 65

gradient descent (GD), 65

gradient step, 66

gradient-based methods, 68

graph, 68

graph clustering, 68

hard clustering, 68

high-dimensional regime, 69

Hilbert space, 69

hinge loss, 70

histogram, 70

horizontal federated learning

(HFL), 71

Huber loss, 72

Huber regression, 72

hypothesis, 72

hypothesis space, 72

independent and identically

distributed (i.i.d.), 73

independent and identically

distributed assumption

(i.i.d. assumption), 73

interpretability, 73

kernel, 74

kernel method, 74



Kullback-Leibler divergence (KL

divergence), 75

label, 75

label space, 76

labeled datapoint, 76

Laplacian matrix, 76

large language model (LLM), 77

law of large numbers, 77

learning rate, 78

learning task, 78

least absolute deviation regression,

79

least absolute shrinkage and

selection operator (Lasso),

79

linear classifier, 79

linear model, 79

linear regression, 80

local dataset, 80

local interpretable model-agnostic

explanations (LIME), 81

local model, 82

logistic loss, 82

logistic regression, 83

loss, 83

loss function, 83

machine learning (ML), 84

map, 85

maximum, 85

maximum likelihood, 85

mean, 85

mean squared estimation error

(MSEE), 86

metric, 86

minimum, 87

missing data, 87

model, 87

model parameters, 87

model selection, 88

multi-armed bandit (MAB), 88

multi-label classification, 88

multitask learning, 89

multivariate normal distribution,

89

mutual information (MI), 90

nearest neighbor (NN), 90

neighborhood, 91

neighbors, 91

networked data, 91



networked exponential families

(nExpFam), 91

networked federated learning

(NFL), 91

networked model, 92

node degree, 92

non-smooth, 92

norm, 92

objective function, 92

online algorithm, 93

online gradient descent (online

GD), 94

online learning, 96

optimism in the face of uncertainty,

96

optimization problem, 97

outlier, 98

overfitting, 98

parameter space, 99

parameters, 99

polynomial regression, 100

positive semi-definite (psd), 100

prediction, 100

predictor, 101

principal component analysis

(PCA), 101

privacy funnel, 101

privacy leakage, 101

privacy protection, 102

probabilistic model, 102

probabilistic principal component

analysis (PPCA), 102

probability, 103

probability density function (pdf),

103

probability distribution, 103

probability space, 104

projected gradient descent

(projected GD), 104

projection, 105

proximable, 105

proximal operator, 105

quadratic function, 107

Rényi divergence, 112

random forest, 107

random variable (RV), 107

realization, 107

rectified linear unit (ReLU), 108

regression, 108



regret, 108

regularization, 108

regularized empirical risk

minimization (RERM),

110

regularized loss minimization

(RLM), 111

regularizer, 111

reward, 112

ridge regression, 112

risk, 113

sample, 113

sample covariance matrix, 113

sample mean, 114

sample size, 114

scatterplot, 114

semi-supervised learning (SSL),

115

sensitive attribute, 115

similarity graph, 115

singular value decomposition

(SVD), 115

smooth, 116

soft clustering, 117

spectral clustering, 118

spectrogram, 120

squared error loss, 120

stability, 121

standard normal vector, 122

statistical aspects, 122

step size, 122

stochastic block model (SBM), 123

stochastic gradient descent (SGD),

123

stopping criterion, 124

strongly convex, 124

structural risk minimization

(SRM), 124

subgradient, 125

subgradient descent, 125

support vector machine (SVM),

125

supremum (or least upper bound),

126

test set, 127

total variation, 127

training error, 127

training set, 127

transparency, 128

trustworthy artificial intelligence



(trustworthy AI), 129

uncertainty, 129

underfitting, 129

upper confidence bound (UCB),

130

validation, 130

validation error, 131

validation set, 131

Vapnik–Chervonenkis dimension

(VC dimension), 131

variance, 132

vertical federated learning (VFL),

132

weights, 133

zero-gradient condition, 134



References

[1] W. Rudin, Real and Complex Analysis, 3rd ed. New York, NY, USA:

McGraw-Hill, 1987.

[2] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York, NY,

USA: McGraw-Hill, 1976.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Balti-

more, MD, USA: The Johns Hopkins Univ. Press, 2013.

[4] G. H. Golub and C. F. Van Loan, “An analysis of the total least squares

problem,” SIAM J. Numer. Anal., vol. 17, no. 6, pp. 883–893, Dec. 1980,

doi: 10.1137/0717073.

[5] A. Klenke, Probability Theory: A Comprehensive Course, 3rd ed. Cham,

Switzerland: Springer Nature, 2020.

[6] P. Billingsley, Probability and Measure, 3rd ed. New York, NY, USA:

Wiley, 1995.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability, 2nd ed.

Belmont, MA, USA: Athena Scientific, 2008.

[8] A. Jung, Machine Learning: The Basics. Singapore, Singapore: Springer

Nature, 2022.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. Cambridge, MA, USA: MIT Press, 2022. [Online].

Available: http://ebookcentral.proquest.com/lib/aalto-ebooks/detail.

action?docID=6925615

http://ebookcentral.proquest.com/lib/aalto-ebooks/detail.action?docID=6925615
http://ebookcentral.proquest.com/lib/aalto-ebooks/detail.action?docID=6925615


[10] M. Sipser, Introduction to the Theory of Computation, 3rd ed. Andover,

U.K.: Cengage Learning, 2013.

[11] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,

U.K.: Cambridge Univ. Press, 1995.

[12] R. G. Gallager, Stochastic Processes: Theory for Applications. New

York, NY, USA: Cambridge Univ. Press, 2013.

[13] L. Richardson and M. Amundsen, RESTful Web APIs. Sebastopol, CA,

USA: O’Reilly Media, 2013.

[14] M. P. Salinas et al., “A systematic review and meta-analysis of artificial

intelligence versus clinicians for skin cancer diagnosis,” npj Digit. Med.,

vol. 7, no. 1, May 2024, Art. no. 125, doi: 10.1038/s41746-024-01103-x.

[15] E. L. Lehmann and G. Casella, Theory of Point Estimation, 2nd ed.

New York, NY, USA: Springer-Verlag, 1998.

[16] G. F. Cooper, “The computational complexity of probabilistic inference

using bayesian belief networks,” Artif. Intell., vol. 42, no. 2–3, pp. 393–405,

Mar. 1990, doi: 10.1016/0004-3702(90)90060-D.

[17] R. M. Gray, Probability, Random Processes, and Ergodic Properties,

2nd ed. New York, NY, USA: Springer Science+Business Media, 2009.

[18] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. New York, NY, USA:

Springer Science+Business Media, 2001.



[19] J. H. Friedman, “Greedy function approximation: A gradient boosting

machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001, doi:

10.1214/aos/1013203451.

[20] O. Chapelle, B. Schölkopf, and A. Zien, Eds. Semi-Supervised Learning .

Cambridge, MA, USA: MIT Press, 2006.

[21] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic View-

point. Cambridge, U.K.: Cambridge Univ. Press, 2019.

[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:

Cambridge Univ. Press, 2004.

[23] D. Sun, K.-C. Toh, and Y. Yuan, “Convex clustering: Model,

theoretical guarantee and efficient algorithm,” J. Mach. Learn.

Res., vol. 22, no. 9, pp. 1–32, Jan. 2021. [Online]. Available:

http://jmlr.org/papers/v22/18-694.html

[24] K. Pelckmans, J. De Brabanter, J. A. K. Suykens, and B. De Moor,

“Convex clustering shrinkage,” presented at the PASCAL Workshop

Statist. Optim. Clustering Workshop, 2005.

[25] E. F. Codd, “A relational model of data for large shared data

banks,” Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970, doi:

10.1145/362384.362685.

[26] European Union, “Regulation (EU) 2016/679 of the European Parliament

and of the Council of 27 April 2016 on the protection of natural

persons with regard to the processing of personal data and on the free

http://jmlr.org/papers/v22/18-694.html


movement of such data, and repealing Directive 95/46/EC (General Data

Protection Regulation) (Text with EEA relevance),” L 119/1, May 4,

2016. [Online]. Available: https://eur-lex.europa.eu/eli/reg/2016/679/oj

[27] European Union, “Regulation (EU) 2018/1725 of the European

Parliament and of the Council of 23 October 2018 on the protection of

natural persons with regard to the processing of personal data by the

Union institutions, bodies, offices and agencies and on the free movement

of such data, and repealing Regulation (EC) No 45/2001 and Decision

No 1247/2002/EC (Text with EEA relevance),” L 295/39, Nov. 21, 2018.

[Online]. Available: https://eur-lex.europa.eu/eli/reg/2018/1725/oj

[28] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.

Hoboken, NJ, USA: Wiley, 2006.

[29] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-

enhanced federated learning against poisoning adversaries,” IEEE

Trans. Inf. Forensics Security, vol. 16, pp. 4574–4588, 2021, doi:

10.1109/TIFS.2021.3108434.

[30] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu, “PoisonGAN:

Generative poisoning attacks against federated learning in edge comput-

ing systems,” IEEE Internet Things J., vol. 8, no. 5, pp. 3310–3322, Mar.

2021, doi: 10.1109/JIOT.2020.3023126.

[31] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System

Concepts, 7th ed. New York, NY, USA: McGraw-Hill Education, 2019.

[Online]. Available: https://db-book.com/

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2018/1725/oj
https://db-book.com/


[32] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Reading,

MA, USA: Addison-Wesley Publishing Company, 1995.

[33] S. Hoberman, Data Modeling Made Simple: A Practical Guide for Busi-

ness and IT Professionals, 2nd ed. Basking Ridge, NJ, USA: Technics

Publications, 2009.

[34] R. Ramakrishnan and J. Gehrke, Database Management Systems, 3rd ed.

New York, NY, USA: McGraw-Hill, 2002.

[35] T. Gebru et al., “Datasheets for datasets,” Commun. ACM, vol. 64, no. 12,

pp. 86–92, Nov. 2021, doi: 10.1145/3458723.

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,

MA, USA: MIT Press, 2016.

[37] G. Tel, Introduction to Distributed Algorithms, 2nd ed. Cambridge,

U.K.: Cambridge Univ. Press, 2000.

[38] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods. Belmont, MA, USA: Athena Scientific, 2015.

[39] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and

Optimization. Belmont, MA, USA: Athena Scientific, 2003.

[40] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1993.

[41] P. R. Halmos, Measure Theory. New York, NY, USA: Springer-Verlag,

1974.



[42] C. M. Bishop, Pattern Recognition and Machine Learning. New York,

NY, USA: Springer Science+Business Media, 2006.

[43] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential

families, and variational inference,” Found. Trends Mach. Learn., vol. 1,

no. 1–2, pp. 1–305, Nov. 2008, doi: 10.1561/2200000001.

[44] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. New

York, NY, USA: Cambridge Univ. Press, 2006.

[45] E. Hazan, “Introduction to online convex optimization,” Found. Trends

Optim., vol. 2, no. 3–4, pp. 157–325, Aug. 2016, doi: 10.1561/2400000013.

[46] J. Colin, T. Fel, R. Cadène, and T. Serre, “What I cannot

predict, I do not understand: A human-centered evaluation

framework for explainability methods,” in Adv. Neural Inf. Process.

Syst., S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K.

Cho, and A. Oh, Eds. vol. 35, 2022, pp. 2832–2845. [Online].

Available: https://proceedings.neurips.cc/paper_files/paper/2022/hash/

13113e938f2957891c0c5e8df811dd01-Abstract-Conference.html

[47] L. Zhang, G. Karakasidis, A. Odnoblyudova, L. Dogruel, Y. Tian, and

A. Jung, “Explainable empirical risk minimization,” Neural Comput.

Appl., vol. 36, no. 8, pp. 3983–3996, Mar. 2024, doi: 10.1007/s00521-023-

09269-3.

[48] A. Jung and P. H. J. Nardelli, “An information-theoretic approach to

personalized explainable machine learning,” IEEE Signal Process. Lett.,

vol. 27, pp. 825–829, 2020, doi: 10.1109/LSP.2020.2993176.

https://proceedings.neurips.cc/paper_files/paper/2022/hash/13113e938f2957891c0c5e8df811dd01-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/13113e938f2957891c0c5e8df811dd01-Abstract-Conference.html


[49] J. Chen, L. Song, M. J. Wainwright, and M. I. Jordan,

“Learning to explain: An information-theoretic perspective on model

interpretation,” in Proc. 35th Int. Conf. Mach. Learn., J. Dy and

A. Krause, Eds. vol. 80, 2018, pp. 883–892. [Online]. Available:

https://proceedings.mlr.press/v80/chen18j.html

[50] C. Rudin, “Stop explaining black box machine learning models for high-

stakes decisions and use interpretable models instead,” Nature Mach.

Intell., vol. 1, no. 5, pp. 206–215, May 2019, doi: 10.1038/s42256-019-

0048-x.

[51] C. Molnar, Interpretable Machine Learning: A Guide for Making

Black Box Models Explainable, 3rd ed., 2025. [Online]. Available:

https://christophm.github.io/interpretable-ml-book/

[52] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and

D. Batra, “Grad-CAM: Visual explanations from deep networks via

gradient-based localization,” in 2017 IEEE Int. Conf. Comput. Vis., pp.

618–626, doi: 10.1109/ICCV.2017.74.

[53] D. N. Gujarati and D. C. Porter, Basic Econometrics, 5th ed. New

York, NY, USA: McGraw-Hill/Irwin, 2009.

[54] Y. Dodge, Ed. The Oxford Dictionary of Statistical Terms . New York,

NY, USA: Oxford Univ. Press, 2003.

[55] B. S. Everitt, The Cambridge Dictionary of Statistics, 2nd ed. Cambridge,

U.K.: Cambridge Univ. Press, 2002.

https://proceedings.mlr.press/v80/chen18j.html
https://christophm.github.io/interpretable-ml-book/


[56] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA,

USA: MIT Press, 2002.

[57] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:

Explaining the predictions of any classifier,” in Proc. 22nd ACM SIGKDD

Int. Conf. Knowl. Discovery Data Mining, Aug. 2016, pp. 1135–1144,

doi: 10.1145/2939672.2939778.

[58] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.

y Arcas, “Communication-efficient learning of deep networks from

decentralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., A.

Singh and J. Zhu, Eds. vol. 54, 2017, pp. 1273–1282. [Online]. Available:

https://proceedings.mlr.press/v54/mcmahan17a.html

[59] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,

“Federated optimization in heterogeneous networks,” in Proc. Mach.

Learn. Syst., I. Dhillon, D. Papailiopoulos, and V. Sze, Eds. vol. 2, 2020.

[Online]. Available: https://proceedings.mlsys.org/paper_files/paper/

2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html

[60] Y. SarcheshmehPour, Y. Tian, L. Zhang, and A. Jung, “Flow-based

clustering and spectral clustering: A comparison,” in 2021 55th Asilomar

Conf. Signals, Syst., Comput., M. B. Matthews, Ed. pp. 1292–1296, doi:

10.1109/IEEECONF53345.2021.9723162.

[61] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochas-

https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html


tic Processes, 4th ed. New York, NY, USA: McGraw-Hill Higher Educa-

tion, 2002.

[62] A. Lapidoth, A Foundation in Digital Communication. Cambridge,

U.K.: Cambridge Univ. Press, 2009.

[63] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning. Cambridge, MA, USA: MIT Press, 2006.

[64] S. Ross, A First Course in Probability, 9th ed. Boston, MA, USA:

Pearson Education, 2014.

[65] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:

From Theory to Algorithms. New York, NY, USA: Cambridge Univ.

Press, 2014.

[66] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep

neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 828–841,

Oct. 2019, doi: 10.1109/TEVC.2019.2890858.

[67] S. Mallat, “Understanding deep convolutional networks,” Philos. Trans.

Roy. Soc. A, vol. 374, no. 2065, Apr. 2016, Art. no. 20150203, doi:

10.1098/rsta.2015.0203.

[68] Y. SarcheshmehPour, Y. Tian, L. Zhang, and A. Jung, “Clus-

tered federated learning via generalized total variation minimization,”

IEEE Trans. Signal Process., vol. 71, pp. 4240–4256, 2023, doi:

10.1109/TSP.2023.3322848.



[69] H. P. Lopuhaä and P. J. Rousseeuw, “Breakdown points of affine

equivariant estimators of multivariate location and covariance ma-

trices,” Ann. Statist., vol. 19, no. 1, pp. 229–248, Mar. 1991, doi:

10.1214/aos/1176347978.

[70] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,

vol. 1, no. 3, pp. 127–239, Jan. 2014, doi: 10.1561/2400000003.

[71] R. T. Rockafellar, Network Flows and Monotropic Optimization. Bel-

mont, MA, USA: Athena Scientific, 1998.

[72] U. von Luxburg, “A tutorial on spectral clustering,” Statist. Comput.,

vol. 17, no. 4, pp. 395–416, Dec. 2007, doi: 10.1007/s11222-007-9033-z.

[73] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data:

Methods, Theory and Applications. Berlin, Germany: Springer-Verlag,

2011.

[74] N. Young, An Introduction to Hilbert Space. New York, NY, USA:

Cambridge Univ. Press, 1988.

[75] C. H. Lampert, “Kernel methods in computer vision,” Found. Trends

Comput. Graph. Vis., vol. 4, no. 3, pp. 193–285, Sep. 2009, doi:

10.1561/0600000027.

[76] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Horizontal

federated learning,” in Federated Learning. Cham, Switzerland: Springer

Nature, 2020, ch. 4, pp. 49–67.



[77] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:

Analysis and an algorithm,” in Adv. Neural Inf. Process. Syst., T.

Dietterich, S. Becker, and Z. Ghahramani, Eds. vol. 14, 2001, pp.

849–856. [Online]. Available: https://papers.nips.cc/paper_files/paper/

2001/hash/801272ee79cfde7fa5960571fee36b9b-Abstract.html

[78] A. Vaswani et al., “Attention is all you need,” in Adv. Neural Inf.

Process. Syst., I. Guyon, U. von Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds. vol. 30, 2017,

pp. 5998–6008. [Online]. Available: https://papers.nips.cc/paper_files/

paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[79] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, pp. 41–75, Jul.

1997, doi: 10.1023/A:1007379606734.

[80] A. Jung, G. Hannak, and N. Goertz, “Graphical lasso based model

selection for time series,” IEEE Signal Process. Lett., vol. 22, no. 10, pp.

1781–1785, Oct. 2015, doi: 10.1109/LSP.2015.2425434.

[81] A. Jung, “Learning the conditional independence structure of stationary

time series: A multitask learning approach,” IEEE Trans. Signal Process.,

vol. 63, no. 21, Nov. 2015, doi: 10.1109/TSP.2015.2460219.

[82] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with

Sparsity: The Lasso and Generalizations. Boca Raton, FL, USA: CRC

Press, 2015.

[83] K. Abayomi, A. Gelman, and M. Levy, “Diagnostics for multivariate

https://papers.nips.cc/paper_files/paper/2001/hash/801272ee79cfde7fa5960571fee36b9b-Abstract.html
https://papers.nips.cc/paper_files/paper/2001/hash/801272ee79cfde7fa5960571fee36b9b-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


imputations,” J. Roy. Statist. Soc.: Ser. C (Appl. Statist.), vol. 57, no. 3,

pp. 273–291, Jun. 2008, doi: 10.1111/j.1467-9876.2007.00613.x.

[84] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-

stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,

vol. 5, no. 1, pp. 1–122, Dec. 2012, doi: 10.1561/2200000024.

[85] A. Lapidoth, A Foundation in Digital Communication, 2nd ed. Cam-

bridge, U.K.: Cambridge Univ. Press, 2017.

[86] A. Jung, “Networked exponential families for big data over networks,”

IEEE Access, vol. 8, pp. 202 897–202 909, Nov. 2020, doi: 10.1109/AC-

CESS.2020.3033817.

[87] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course. Boston, MA, USA: Kluwer Academic Publishers, 2004.

[88] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. New York,

NY, USA: Cambridge Univ. Press, 2013.

[89] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent

optimal for strongly convex stochastic optimization,” in Proc. 29th Int.

Conf. Mach. Learn., J. Langford and J. Pineau, Eds. 2012, pp. 449–456.

[Online]. Available: https://icml.cc/Conferences/2012/papers/261.pdf

[90] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods,

2nd ed. New York, NY, USA: Springer-Verlag, 1991.

[91] M. Kearns and M. Li, “Learning in the presence of malicious errors,” SIAM

J. Comput., vol. 22, no. 4, pp. 807–837, Aug. 1993, doi: 10.1137/0222052.

https://icml.cc/Conferences/2012/papers/261.pdf


[92] G. Lugosi and S. Mendelson, “Robust multivariate mean estimation: The

optimality of trimmed mean,” Ann. Statist., vol. 49, no. 1, pp. 393–410,

Feb. 2021, doi: 10.1214/20-AOS1961.

[93] A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Médard, “From the

information bottleneck to the privacy funnel,” in 2014 IEEE Inf. Theory

Workshop, pp. 501–505, doi: 10.1109/ITW.2014.6970882.

[94] A. Ünsal and M. Önen, “Information-theoretic approaches to differential

privacy,” ACM Comput. Surv., vol. 56, no. 3, Oct. 2023, Art. no. 76, doi:

10.1145/3604904.

[95] O. Kallenberg, Foundations of Modern Probability. New York, NY, USA:

Springer-Verlag, 1997.

[96] L. Condat, “A primal–dual splitting method for convex optimization

involving lipschitzian, proximable and linear composite terms,” J. Optim.

Theory Appl., vol. 158, no. 2, pp. 460–479, Aug. 2013, doi: 10.1007/s10957-

012-0245-9.

[97] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone

Operator Theory in Hilbert Spaces, 2nd ed. New York, NY, USA: Springer

Science+Business Media, 2017.

[98] S. Shalev-Shwartz and A. Tewari, “Stochastic methods for ℓ1 regularized

loss minimization,” in Proc. 26th Annu. Int. Conf. Mach. Learn., L.

Bottou and M. Littman, Eds. Jun. 2009, pp. 929–936.

[99] I. Csiszar, “Generalized cutoff rates and Renyi’s information measures,”



IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 26–34, Jan. 1995, doi:

10.1109/18.370121.

[100] S. Bubeck, “Convex optimization: Algorithms and complexity,” Found.

Trends Mach. Learn., vol. 8, no. 3–4, pp. 231–357, Nov. 2015,

10.1561/2200000050.

[101] D. P. Bertsekas, Convex Optimization Algorithms. Belmont, MA, USA:

Athena Scientific, 2015.

[102] L. Cohen, Time-Frequency Analysis. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 1995.

[103] J. Li, L. Han, X. Li, J. Zhu, B. Yuan, and Z. Gou, “An evaluation of

deep neural network models for music classification using spectrograms,”

Multimedia Tools Appl., vol. 81, no. 4, pp. 4621–4647, Feb. 2022, doi:

10.1007/s11042-020-10465-9.

[104] B. Boashash, Ed. Time Frequency Signal Analysis and Processing: A

Comprehensive Reference. Oxford, U.K.: Elsevier, 2003.

[105] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.

Burlington, MA, USA: Academic, 2009.

[106] E. Abbe, “Community detection and stochastic block models: Recent

developments,” J. Mach. Learn. Res., vol. 18, no. 177, pp. 1–86, Apr.

2018. [Online]. Available: http://jmlr.org/papers/v18/16-480.html

[107] L. Bottou, “On-line learning and stochastic approximations,” in On-

http://jmlr.org/papers/v18/16-480.html


Line Learning in Neural Networks, D. Saad, Ed. New York, NY, USA:

Cambridge Univ. Press, 1999, ch. 2, pp. 9–42.

[108] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:

Athena Scientific, 1999.

[109] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. New York, NY,

USA: Cambridge Univ. Press, 2000.

[110] High-Level Expert Group on Artificial Intelligence, “Ethics guide-

lines for trustworthy AI,” European Commission, Apr. 8, 2019.

[Online]. Available: https://digital-strategy.ec.europa.eu/en/library/

ethics-guidelines-trustworthy-ai

[111] C. Gallese, “The AI act proposal: A new right to technical

interpretability?,” SSRN Electron. J., Feb. 2023. [Online]. Available:

https://ssrn.com/abstract=4398206

[112] M. Mitchell et al., “Model cards for model reporting,” in Proc.

Conf. Fairness, Accountability, Transparency, 2019, pp. 220–229, doi:

10.1145/3287560.3287596.

[113] K. Shahriari and M. Shahriari, “IEEE standard review — Ethically

aligned design: A vision for prioritizing human wellbeing with artificial

intelligence and autonomous systems,” in 2017 IEEE Canada Int. Human-

itarian Technol. Conf., pp. 197–201, doi: 10.1109/IHTC.2017.8058187.

[114] D. Pfau and A. Jung, “Engineering trustworthy AI: A developer

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://ssrn.com/abstract=4398206


guide for empirical risk minimization,” Nov. 2024. [Online]. Available:

https://arxiv.org/abs/2410.19361

[115] High-Level Expert Group on Artificial Intelligence, “The as-

sessment list for trustworthy artificial intelligence (ALTAI):

For self assessment,” European Commission, Jul. 17, 2020.

[Online]. Available: https://digital-strategy.ec.europa.eu/en/library/

assessment-list-trustworthy-artificial-intelligence-altai-self-assessment

[116] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Vertical

federated learning,” in Federated Learning. Cham, Switzerland: Springer

Nature, 2020, ch. 5, pp. 69–81.

https://arxiv.org/abs/2410.19361
https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment

	Machine Learning Concepts

